Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37494638

ABSTRACT

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

2.
Nat Mater ; 22(1): 36-41, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36396962

ABSTRACT

The honeycomb magnet α-RuCl3 has attracted considerable interest because it is proximate to the Kitaev Hamiltonian whose excitations are Majoranas and vortices. The thermal Hall conductivity κxy of Majorana fermions is predicted to be half-quantized. Half-quantization of κxy/T (T, temperature) was recently reported, but this observation has proven difficult to reproduce. Here, we report detailed measurements of κxy on α-RuCl3 with the magnetic field B ∥ a (zigzag axis). In our experiment, κxy/T is observed to be strongly temperature dependent between 0.5 and 10 K. We show that its temperature profile matches the distinct form expected for topological bosonic modes in a Chern-insulator-like model. Our analysis yields magnon band energies in agreement with spectroscopic experiments. At high B, the spin excitations evolve into magnon-like modes with a Chern number of ~1. The bosonic character is incompatible with half-quantization of κxy/T.

3.
Chem Mater ; 35(6): 2330-2341, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-38616973

ABSTRACT

Spinel compounds AB2X4 consist of both tetrahedral (AX4) and octahedral (BX6) environments with the former forming a diamond lattice and the latter a geometrically frustrated pyrochlore lattice. Exploring the fascinating physical properties and their correlations with structural features is critical in understanding these materials. FeMn2O4 has been reported to exhibit one structural transition and two successive magnetic transitions. Here, we report the polyhedral distortions and their correlations to the structural and two magnetic transitions in FeMn2O4 by employing the high-resolution neutron powder diffraction. The cation distribution is found to be (Mn0.92+Fe0.13+)A(Mn3+Fe0.93+Mn0.12+)BO4. While large trigonal distortion is found even in the high-temperature cubic phase, the first-order cubic-tetragonal structural transition associated with the elongation of both tetrahedra and octahedra with shared oxygen atoms along the c axis occurs at TS ≈ 750 K, driven by the Jahn-Teller effect of the orbital active B-site Mn3+ cation. Strong magnetoelastic coupling is unveiled at TN1 ≈ 400 K as manifested by the appearance of Néel-type collinear ferrimagnetic order, an anomaly in both tetrahedral and octahedral distortions, as well as an anomalous decrease of the lattice constants c and a weak anomaly of a. Upon cooling to TN2 ≈ 65 K, it evolves to a noncollinear ferrimagnetic order accompanied by the different moments at the split magnetic sites B1 and B2. Only one-half of the B-site Mn3+/Fe3+ spins, i.e., the B2-site spins in the pyrochlore lattice, are canted, which is a unique magnetic order among spinels. The canting angle between A-site and B2-site moments is ∼25°, but the B1-site moment stays antiparallel to the A-site moment even at 10 K. This noncollinear order is accompanied by a modification of the O-B-O bond angles in the octahedra without significant change in lattice constants or tetrahedral/octahedral distortion parameters, indicating a distinct magnetoelastic coupling. We demonstrate distinct roles of the A-site and B-site magnetic cations in the structural and magnetic properties of FeMn2O4. Our study indicates that FeMn2O4 is a wonderful platform to unveil interesting magnetic order and to investigate their correlations with polyhedral distortions and lattice.

4.
Nano Lett ; 22(5): 1946-1953, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226804

ABSTRACT

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.

5.
Nano Lett ; 20(12): 8438-8445, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33166145

ABSTRACT

Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl3, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl3 interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl3 at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: EF = 0.6 eV (n = 2.7 × 1013 cm-2). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl3 giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping.

6.
J Anal Methods Chem ; 2019: 6164058, 2019.
Article in English | MEDLINE | ID: mdl-30944753

ABSTRACT

TOF-ND elastic scattering of thermal neutrons offers some important advantages over X-ray diffraction (XRD), X-ray fluorescence (XRF), and metallography for the study of archaeological and numismatic problems. Traditional analytical methods are usually destructive and often probe only the surface. Neutrons deeply penetrate samples, simultaneously giving nondestructive bulk information about the crystal structure, composition, and texture (alignment of crystallites) from which thermomechanical manufacturing processes (e.g., cast, struck, or rolled) may be inferred. An analysis of the metal composition and minting processes used for making ancient Judaean bronze and leaded bronze coins from first century BCE and CE is used as a case study. One of the first ND analyses of the temperature used for striking bronze coins is also presented.

7.
Phys Rev Lett ; 120(11): 117204, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29601734

ABSTRACT

The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics: beyond a magnetic field of B_{c}≈7.5 T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpected, large energy gap arises, which increases linearly with the magnetic field, reaching remarkable ℏω_{0}/k_{B}≈50 K at 18 T.

8.
Science ; 356(6342): 1055-1059, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28596361

ABSTRACT

The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

9.
Sci Rep ; 4: 5471, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24969218

ABSTRACT

Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the Dy(III) ion results in a new relaxation mechanism, hitherto unknown for mononuclear Dy(III) complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.

10.
Sci Rep ; 2: 747, 2012.
Article in English | MEDLINE | ID: mdl-23087812

ABSTRACT

We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in "real-world" batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Electrodes , Graphite/chemistry , Ions/chemistry , Neutron Diffraction
11.
Ear Hear ; 33(2): 153-76, 2012.
Article in English | MEDLINE | ID: mdl-22156949

ABSTRACT

OBJECTIVES: Chronic subjective tinnitus is a prevalent condition that causes significant distress to millions of Americans. Effective tinnitus treatments are urgently needed, but evaluating them is hampered by the lack of standardized measures that are validated for both intake assessment and evaluation of treatment outcomes. This work was designed to develop a new self-report questionnaire, the Tinnitus Functional Index (TFI), that would have documented validity both for scaling the severity and negative impact of tinnitus for use in intake assessment and for measuring treatment-related changes in tinnitus (responsiveness) and that would provide comprehensive coverage of multiple tinnitus severity domains. DESIGN: To use preexisting knowledge concerning tinnitus-related problems, an Item Selection Panel (17 expert judges) surveyed the content (175 items) of nine widely used tinnitus questionnaires. From those items, the Panel identified 13 separate domains of tinnitus distress and selected 70 items most likely to be responsive to treatment effects. Eliminating redundant items while retaining good content validity and adding new items to achieve the recommended minimum of 3 to 4 items per domain yielded 43 items, which were then used for constructing TFI Prototype 1.Prototype 1 was tested at five clinics. The 326 participants included consecutive patients receiving tinnitus treatment who provided informed consent-constituting a convenience sample. Construct validity of Prototype 1 as an outcome measure was evaluated by measuring responsiveness of the overall scale and its individual items at 3 and 6 mo follow-up with 65 and 42 participants, respectively. Using a predetermined list of criteria, the 30 best-functioning items were selected for constructing TFI Prototype 2.Prototype 2 was tested at four clinics with 347 participants, including 155 and 86 who provided 3 and 6 mo follow-up data, respectively. Analyses were the same as for Prototype 1. Results were used to select the 25 best-functioning items for the final TFI. RESULTS: Both prototypes and the final TFI displayed strong measurement properties, with few missing data, high validity for scaling of tinnitus severity, and good reliability. All TFI versions exhibited the same eight factors characterizing tinnitus severity and negative impact. Responsiveness, evaluated by computing effect sizes for responses at follow-up, was satisfactory in all TFI versions.In the final TFI, Cronbach's alpha was 0.97 and test-retest reliability 0.78. Convergent validity (r = 0.86 with Tinnitus Handicap Inventory [THI]; r = 0.75 with Visual Analog Scale [VAS]) and discriminant validity (r = 0.56 with Beck Depression Inventory-Primary Care [BDI-PC]) were good. The final TFI was successful at detecting improvement from the initial clinic visit to 3 mo with moderate to large effect sizes and from initial to 6 mo with large effect sizes. Effect sizes for the TFI were generally larger than those obtained for the VAS and THI. After careful evaluation, a 13-point reduction was considered a preliminary criterion for meaningful reduction in TFI outcome scores. CONCLUSIONS: The TFI should be useful in both clinical and research settings because of its responsiveness to treatment-related change, validity for scaling the overall severity of tinnitus, and comprehensive coverage of multiple domains of tinnitus severity.


Subject(s)
Severity of Illness Index , Surveys and Questionnaires/standards , Tinnitus/diagnosis , Tinnitus/physiopathology , Chronic Disease , Depression/diagnosis , Follow-Up Studies , Humans , Medical History Taking/standards , Reproducibility of Results , Self Report/standards , Tinnitus/psychology
12.
Proc Natl Acad Sci U S A ; 108(38): 15693-8, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21896723

ABSTRACT

Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl(2)O(4), a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T(∗) = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T(∗) had previously been associated with the onset of glassy behavior. Our new results suggest instead that T(∗) signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.


Subject(s)
Aluminum Oxide/chemistry , Cobalt/chemistry , Magnetics , Oxides/chemistry , Algorithms , Crystallization , Ferrous Compounds/chemistry , Kinetics , Minerals/chemistry , Models, Chemical , Neutrons , Phase Transition , Scattering, Radiation , Temperature , Thermodynamics , X-Ray Diffraction
13.
Inorg Chem ; 45(19): 7689-97, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16961360

ABSTRACT

Catena(dimethylammonium-bis(mu2-chloro)-chlorocuprate), (CH3)2NH2CuCl3, forms chains of Cu2Cl6(2-) bifold dimers linked along the structural chain axis by terminal chlorides forming long semicoordinate bonds to adjacent dimers. The structural chains are separated by dimethylammonium ions that hydrogen bond to chloride ions of the dimers. A structural phase transition below room temperature removes disorder in the hydrogen bonding, leaving adjacent dimers along the chain structurally and magnetically inequivalent, with alternating ferromagnetic and antiferromagnetic pairs. The coupled dimers are magnetically isolated from each other along the structural chain axis by the long semicoordinate Cu-Cl bond. However, the dimers couple to like counterparts on adjacent chains via nonbonding Cl...Cl contacts. The result is two independent magnetic chains, one an alternating antiferromagnetic chain and the other an antiferromagnetic chain of ferromagnetically coupled copper dimers, which run perpendicular to the structural chains. This magnetostructural analysis is used to fit unusual low-temperature (1.6 K) magnetization vs field data that display a two-step saturation. The structural phase transition is identified with neutron scattering and capacitance measurements, and the X-ray crystal structures are determined at room temperature and 84 K. The results appear to resolve long-standing confusion about the origins of the magnetic behavior of this compound and provide a compelling example of the importance of two-halide magnetic exchange.

14.
Nat Mater ; 4(4): 329-34, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15778717

ABSTRACT

Quantum effects dominate the behaviour of many diverse materials. Of particular current interest are those systems in the vicinity of a quantum critical point (QCP). Their physical properties are predicted to reflect those of the nearby QCP with universal features independent of the microscopic details. The prototypical QCP is the Luttinger liquid (LL), which is of relevance to many quasi-one-dimensional materials. The magnetic material KCuF3 realizes an array of weakly coupled spin chains (or LLs) and thus lies close to but not exactly at the LL quantum critical point. By using inelastic neutron scattering we have collected a complete data set of the magnetic correlations of KCuF3 as a function of momentum, energy and temperature. The LL description is found to be valid over an extensive range of these parameters, and departures from this behaviour at high and low energies and temperatures are identified and explained.


Subject(s)
Magnetics , Physics/methods , Models, Statistical , Neutrons , Quantum Theory , Scattering, Radiation , Temperature
15.
Otolaryngol Clin North Am ; 36(2): 235-8, v, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12856293

ABSTRACT

A medical degree does not confer immunity to any of society's ills-not to cancer, not to heart disease, not to a broken leg, not to tinnitus. This article discusses how tinnitus impacted a surgeon, his career, and his family. It concludes with suggestions on conveying the results of the tinnitus evaluation, so the message that there currently is no cure can be tempered with legitimate optimism regarding the achievement of meaningful relief to the patient's great satisfaction today, while waiting hopefully for the cure of tomorrow.


Subject(s)
Quality of Life , Tinnitus/psychology , Humans , Male , Tinnitus/therapy
16.
J Am Acad Audiol ; 13(10): 559-81, 2002.
Article in English | MEDLINE | ID: mdl-12503924

ABSTRACT

Two methods for treating tinnitus are compared. Tinnitus masking has been used for over 25 years, and although this method is used in clinics around the world, there are many misconceptions regarding the proper protocol for its clinical application. Tinnitus retraining therapy has been used clinically for over 12 years and has received considerable international attention. Although these methods are distinctive in their basic approach to tinnitus management, certain aspects of treatment appear similar. These aspects of treatment have created considerableconfusion and controversy, especially regarding the use of "sound therapy" as a basic component of treatment. It is the objective of this article to clarify the major differences that exist between these two forms of treatment.


Subject(s)
Neurophysiology/instrumentation , Perceptual Masking/physiology , Tinnitus/therapy , Acoustic Stimulation/instrumentation , Counseling , Humans , Psychoacoustics , Tinnitus/diagnosis
17.
Otol Neurotol ; 23(2): 239-40, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11875359

Subject(s)
Tinnitus/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...