Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5246, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897988

ABSTRACT

Sulfur-containing scaffolds originating from small alkyl fragments play a crucial role in various pharmaceuticals, agrochemicals, and materials. Nonetheless, their synthesis using conventional methods presents significant challenges. In this study, we introduce a practical and efficient approach that harnesses hydrogen atom transfer photocatalysis to activate volatile alkanes, such as isobutane, butane, propane, ethane, and methane. Subsequently, these nucleophilic radicals react with SO2 to yield the corresponding sulfinates. These sulfinates then serve as versatile building blocks for the synthesis of diverse sulfur-containing organic compounds, including sulfones, sulfonamides, and sulfonate esters. Our use of flow technology offers a robust, safe and scalable platform for effectively activating these challenging gaseous alkanes, facilitating their transformation into valuable sulfinates.

2.
Org Lett ; 25(9): 1353-1358, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36856464

ABSTRACT

A practical electrochemical method for the rapid, safer, and mild synthesis of tertiary hindered alkyl fluorides from carboxylic acids has been developed without the need for hydrofluoric acid salts or non-glass reactors. In this anodic fluorination, collidinium tetrafluoroborate acts as both the supporting electrolyte and fluoride donor. A wide range of functional groups has been shown to be compatible, and the possibility of scale-up using flow electrochemistry has also been demonstrated.

3.
Appl Environ Microbiol ; 88(19): e0071922, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36154165

ABSTRACT

Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolated a bacterium from this insect's gut system, classified as Pseudomonas sp. strain Nvir, that was highly resistant to NPA and was fully degrading it to inorganic nitrogen compounds and carbon dioxide. In order to understand the metabolic fate of NPA, we traced the fate of all atoms of the NPA molecule using isotope tracing experiments with [15N]NPA and [1-13C]NPA, in addition to experiments with uniformly 13C-labeled biomass that was used to follow the incorporation of 12C atoms from [U-12C]NPA into tricarboxylic acid cycle intermediates. With the help of genomics and transcriptomics, we uncovered the isolate's NPA degradation pathway, which involves a putative propionate-3-nitronate monooxygenase responsible for the first step of NPA degradation. The discovered protein shares only 32% sequence identity with previously described propionate-3-nitronate monooxygenases. Finally, we advocate that NPA-degrading bacteria might find application in biotechnology, and their unique enzymes might be used in biosynthesis, bioremediation, and in dealing with postharvest NPA contamination in economically important products. IMPORTANCE Plants have evolved sophisticated chemical defense mechanisms, such as the production of plant toxins in order to deter herbivores. One example of such a plant toxin is nitropropionic acid (NPA), which is produced by leguminous plants and also by certain fungi. In this project, we have isolated a bacterium from the intestinal tract of a pest insect, the Southern green shield bug, that is able to degrade NPA. Through a multiomics approach, we identified the respective metabolic pathway and determined the metabolic fate of all atoms of the NPA molecule. In addition, we provide a new genetic marker that can be used for genome mining toward NPA degradation. The discovery of degradation pathways of plant toxins by environmental bacteria opens new possibilities for pretreatment of contaminated food and feed sources and characterization of understudied enzymes allows their broad application in biotechnology.


Subject(s)
Propionates , Pseudomonas , Animals , Bacteria , Carbon Dioxide/metabolism , Genetic Markers , Insecta , Mixed Function Oxygenases/metabolism , Nitro Compounds , Nitrogen Compounds/metabolism , Plants, Toxic , Propionates/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism
4.
Adv Sci (Weinh) ; 8(15): e2100995, 2021 08.
Article in English | MEDLINE | ID: mdl-34047491

ABSTRACT

As wearable technologies redefine the way people exchange information, receive entertainment, and monitor health, the development of sustainable power sources that capture energy from the user's everyday activities garners increasing interest. Electric fishes, such as the electric eel and the torpedo ray, provide inspiration for such a power source with their ability to generate massive discharges of electricity solely from the metabolic processes within their bodies. Inspired by their example, the device presented in this work harnesses electric power from ion gradients established by capturing the carbon dioxide (CO2 ) from human breath. Upon localized exposure to CO2 , this novel adaptation of reverse electrodialysis chemically generates ion gradients from a single initial solution uniformly distributed throughout the device instead of requiring the active circulation of two different external solutions. A thorough analysis of the relationship between electrical output and the concentration of carbon capture agent (monoethanolamine, MEA), the amount of CO2 captured, and the device geometry informs device design. The prototype device presented here harvests enough energy from a breath-generated ion gradient to power small electronic devices, such as a light-emitting diode (LED).

SELECTION OF CITATIONS
SEARCH DETAIL
...