Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Article in English | MEDLINE | ID: mdl-38631765

ABSTRACT

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Subject(s)
Pick Disease of the Brain , Tauopathies , Male , Humans , Female , tau Proteins/metabolism , Pick Disease of the Brain/genetics , Haplotypes , Genetic Association Studies
2.
Cells ; 12(13)2023 06 27.
Article in English | MEDLINE | ID: mdl-37443768

ABSTRACT

During inflammatory, demyelinating diseases such as multiple sclerosis (MS), inflammation and axonal damage are prevalent early in the course. Axonal damage includes swelling, defects in transport, and failure to clear damaged intracellular proteins, all of which affect recovery and compromise neuronal integrity. The clearance of damaged cell components is important to maintain normal turnover and restore homeostasis. In this study, we used mass spectrometry to identify insoluble proteins within high-speed/mercaptoethanol/sarcosyl-insoluble pellets from purified white matter plaques isolated from the brains of individuals with relapsing-remitting MS (RRMS). We determined that the transmembrane protein 106B (TMEM106B), normally lysosome-associated, is insoluble in RRMS plaques relative to normal-appearing white matter from individuals with Alzheimer's disease and non-neurologic controls. Relative to wild-type mice, hypomorphic mice with a reduction in TMEM106B have increased axonal damage and lipid droplet accumulation in the spinal cord following myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis. Additionally, the corpora callosa from cuprizone-challenged hypomorphic mice fail to clear lipid droplets efficiently during remyelination, suggesting that when TMEM106B is compromised, protein and lipid clearance by the lysosome is delayed. As TMEM106B contains putative lipid- and LC3-binding sites, further exploration of these sites is warranted.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Spinal Cord/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Lipids/adverse effects
3.
Mult Scler Relat Disord ; 68: 104236, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36308971

ABSTRACT

BACKGROUND: Unresolved inflammation in multiple sclerosis (MS) is associated with progressive demyelination and symptom worsening. In the brain, both inflammation and resolution pathways are mediated by free lipid mediators (i.e., oxylipins) that can be derived from the enzymatic hydrolysis of esterified oxylipins . It is not known whether disturbances in the turnover of free lipid mediators from esterified pools exist in postmortem brain of MS patients. We hypothesized that resolution pathways are impaired in MS patients because of disturbances in the turnover of free pro-resolving lipid mediators from esterified lipids. The objective was to characterize free and esterified oxylipins in postmortem prefrontal cortex of MS and unaffected control participants. METHODS: Oxylipins in free, neutral lipid and phospholipid pools were extracted from prefrontal cortex of 10 MS participants and 5 unaffected controls, separated by solid phase extraction columns, and quantified by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Significant differences between the control and MS groups were determined by an unpaired t-test with Benjamini and Hochberg False Discovery Rate correction (10%) applied to oxylipins within each lipid pool. RESULTS: The concentration of 7 esterified pro-resolving fatty acid epoxides within neutral lipids were significantly higher by 126%-285% in postmortem prefrontal cortex of MS compared to control participants. The concentration of esterified linoleic acid-derived 9(10)-epoxy-octadecenoic acid, a pro-inflammatory epoxide, was higher by 206% in MS compared to controls. No significant changes were observed in free or phospholipid-bound oxylipins. CONCLUSION: In MS, several pro-resolving lipid mediators are trapped within prefrontal cortex neutral lipids, potentially limiting their supply and availability in the free bioactive form. This may explain why inflammation resolution is impaired in MS patients.


Subject(s)
Multiple Sclerosis , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Oxylipins/analysis , Brain , Phospholipids , Epoxy Compounds
4.
Anal Chem ; 92(10): 7334-7342, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32253910

ABSTRACT

Nanobodies have been progressively replacing traditional antibodies in various immunological methods. However, the use of nanobodies as capture antibodies is greatly hampered by their poor performance after passive adsorption to polystyrene microplates, and this restricts the full use of double nanobodies in sandwich enzyme-linked immunosorbent assays (ELISAs). Herein, using the human soluble epoxide hydrolase (sEH) as a model analyte, we found that both the immobilization format and the blocking agent have a significant influence on the performance of capture nanobodies immobilized on polystyrene and the subsequent development of double-nanobody sandwich ELISAs. We first conducted epitope mapping for pairing nanobodies and then prepared a horseradish-peroxidase-labeled nanobody using a mild conjugation procedure as a detection antibody throughout the work. The resulting sandwich ELISA using a capture nanobody (A9, 1.25 µg/mL) after passive adsorption and bovine serum albumin (BSA) as a blocking agent generated a moderate sensitivity of 0.0164 OD·mL/ng and a limit of detection (LOD) of 0.74 ng/mL. However, the introduction of streptavidin as a linker to the capture nanobody at the same working concentration demonstrated a dramatic 16-fold increase in sensitivity (0.262 OD·mL/ng) and a 25-fold decrease in the LOD for sEH (0.03 ng/mL). The streptavidin-bridged double-nanobody ELISA was then successfully applied to tests for recovery, cross-reactivity, and real samples. Meanwhile, we accidentally found that blocking with skim milk could severely damage the performance of the capture nanobody by an order of magnitude compared with BSA. This work provides guidelines to retain the high effectiveness of the capture nanobody and thus to further develop the double-nanobody ELISA for various analytes.


Subject(s)
Diabetes Mellitus/diagnosis , Enzyme-Linked Immunosorbent Assay , Epoxide Hydrolases/analysis , Leukocytes, Mononuclear/enzymology , Multiple Sclerosis/diagnosis , Diabetes Mellitus/enzymology , Epoxide Hydrolases/metabolism , Humans , Leukocytes, Mononuclear/pathology , Multiple Sclerosis/enzymology
5.
Sci Transl Med ; 6(248): 248ra107, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25100741

ABSTRACT

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmune-mediated demyelination and neurodegeneration. The CNS of patients with MS harbors expanded clones of antigen-experienced B cells that reside in distinct compartments including the meninges, cerebrospinal fluid (CSF), and parenchyma. It is not understood whether this immune infiltrate initiates its development in the CNS or in peripheral tissues. B cells in the CSF can exchange with those in peripheral blood, implying that CNS B cells may have access to lymphoid tissue that may be the specific compartment(s) in which CNS-resident B cells encounter antigen and experience affinity maturation. Paired tissues were used to determine whether the B cells that populate the CNS mature in the draining cervical lymph nodes (CLNs). High-throughput sequencing of the antibody repertoire demonstrated that clonally expanded B cells were present in both compartments. Founding members of clones were more often found in the draining CLNs. More mature clonal members derived from these founders were observed in the draining CLNs and also in the CNS, including lesions. These data provide new evidence that B cells traffic freely across the tissue barrier, with the majority of B cell maturation occurring outside of the CNS in the secondary lymphoid tissue. Our study may aid in further defining the mechanisms of immunomodulatory therapies that either deplete circulating B cells or affect the intrathecal B cell compartment by inhibiting lymphocyte transmigration into the CNS.


Subject(s)
B-Lymphocytes/immunology , Brain/pathology , Cell Differentiation/immunology , Cervical Vertebrae/pathology , Lymph Nodes/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Adult , Aged , Aged, 80 and over , Antibodies/immunology , Antigens/metabolism , Cell Compartmentation , Cell Lineage , Cell Movement/immunology , Clone Cells , Female , Humans , Male , Middle Aged , Models, Immunological , Sequence Analysis, Protein
6.
PLoS One ; 7(3): e31886, 2012.
Article in English | MEDLINE | ID: mdl-22412845

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of unknown origin that affects the central nervous system of an estimated 400,000 Americans. GBV-C or hepatitis G is a flavivirus that is found in the serum of 1-2% of blood donors. It was originally associated with hepatitis, but is now believed to be a relatively non-pathogenic lymphotropic virus. Fifty frozen specimens from the brains of deceased persons affected by MS were obtained along with 15 normal control brain specimens. RNA was extracted and ribosomal RNAs were depleted before sequencing on the Illumina GAII. These 36 bp reads were compared with a non-redundant database derived from the 600,000+ viral sequences in GenBank organized into 4080 taxa. An individual read successfully aligned to the viral database was considered to be a "hit". Normalized MS specimen hit rates for each viral taxon were compared to the distribution of hits in the normal controls. Seventeen MS and 11 control brain extracts were sequenced, yielding 4-10 million sequences ("reads") each. Over-representation of sequence from at least one of 12 viral taxa was observed in 7 of the 17 MS samples. Sequences resembling other viruses previously implicated in the pathogenesis of MS were not significantly enriched in any of the diseased brain specimens. Sequences from GB virus C (GBV-C), a flavivirus not previously isolated from brain, were enriched in one of the MS samples. GBV-C in this brain specimen was confirmed by specific amplification in this single MS brain specimen, but not in the 30 other MS brain samples available. The entire 9.4 kb sequence of this GBV-C isolate is reported here. This study shows the feasibility of deep sequencing for the detection of occult viral infections in the brains of deceased persons with MS. The first isolation of GBV-C from human brain is reported here.


Subject(s)
Brain/virology , Flaviviridae Infections/complications , GB virus C/isolation & purification , Hepatitis, Viral, Human/complications , High-Throughput Nucleotide Sequencing , Multiple Sclerosis/virology , Adult , Aged , Aged, 80 and over , Brain/pathology , Case-Control Studies , Cluster Analysis , GB virus C/genetics , Genes, Viral , Humans , Middle Aged , Multiple Sclerosis/diagnosis , Multiple Sclerosis/etiology , RNA, Viral
7.
J Alzheimers Dis ; 9(3): 225-33, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16914832

ABSTRACT

The role of iron metabolism in Alzheimer's disease (AD) is well documented. Regulation of the proteins that maintain cellular iron metabolism is mediated by two cytoplasmic RNA-binding proteins, the Iron Regulatory Proteins (IRP1 and IRP2), that function through post-transcriptional interactions with RNA stem loop structures called iron-responsive elements. As the primary mediator of iron homeostasis in neuronal cells, IRP2 is a strong candidate for polymorphisms that could impact AD pathogenesis. Thus, we performed a pilot study to assess polymorphisms in the gene encoding IRP2 (IREB2) on clinically well-characterized, post-mortem samples (50 AD and 50 controls). DNA sequence analysis of the IREB2 gene region revealed 14 polymorphisms. Two (rs2656070 and rs13180) showed statistically significant skewing of allelic and genotypic distributions between AD patients and controls. In silico analyses revealed that rs2656070 lies within a probable promoter and disrupts the binding sites of at least two known transcription factors. Though silent and likely not functionally relevant, rs13180 is in complete LD with rs2656070 (D' > 0.999), creating an IREB2-haplotype that is significantly associated with AD. Confirmation of this association in a larger cohort of cases and controls would further support the role of iron regulation in the pathogenesis of this catastrophic and increasingly common neurodegenerative disorder.


Subject(s)
Alzheimer Disease/genetics , Iron Regulatory Protein 2/genetics , Aged , Alleles , Alzheimer Disease/psychology , Brain Chemistry/genetics , Computer Simulation , DNA/genetics , DNA/isolation & purification , DNA Primers , Female , Gene Frequency , Genotype , Haplotypes , Humans , Male , Middle Aged , Phenotype , Pilot Projects , Polymorphism, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction
8.
Mult Scler ; 10(5): 536-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15471370

ABSTRACT

UNLABELLED: Regulated upon activation, normal T-cell expressed and secreted (RANTES) is a beta-chemokine and has been detected in brain lesions of multiple sclerosis (MS) patients. Considering its potential role in MS, we screened two functional polymorphisms in the proximal promoter region of the RANTES in MS patients versus controls. METHODS: We examined 140 postmortem brain samples from subjects with a primary diagnosis of MS, and peripheral blood samples from 216 control subjects. The RANTES-28C/G and -403G/A promoter polymorphisms were examined. All subjects were non-Hispanic Caucasians. RESULTS: MS cases differed from controls showing a significant association with the 403G/A polymorphism (odds ratio, 2.359, [1.465-3.799]; P=0.0001), but not the -28C/G (P=NS) polymorphism. There was a significant association of the -28G allele with both early onset (P=0.031) and longer survival (P=0.006). CONCLUSION: There is a significant but complex association of the RANTES gene with MS.


Subject(s)
Chemokine CCL5/genetics , Multiple Sclerosis/epidemiology , Multiple Sclerosis/genetics , Adult , Aged , Female , Genetic Markers , Genetic Predisposition to Disease/epidemiology , Genotype , Humans , Male , Middle Aged , Polymorphism, Genetic , Promoter Regions, Genetic , Risk Factors
9.
Brain Res Mol Brain Res ; 119(2): 170-83, 2003 Nov 26.
Article in English | MEDLINE | ID: mdl-14625084

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, rho=0.73, by Spearman's rho analysis); while 70 transcripts were uniquely differentially expressed (> or = 1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin beta-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.


Subject(s)
Axons/metabolism , Central Nervous System/metabolism , Gene Expression Regulation/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Nerve Tissue Proteins/metabolism , Adult , Axons/pathology , Central Nervous System/pathology , Down-Regulation/genetics , Female , Humans , Male , Multiple Sclerosis/pathology , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , RNA, Messenger/genetics , Reproducibility of Results , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...