Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068401

ABSTRACT

Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages' agricultural application has limitations rooted in these viruses' biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction's possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.

2.
PLoS One ; 15(4): e0231864, 2020.
Article in English | MEDLINE | ID: mdl-32302368

ABSTRACT

Metagenomics is a helpful tool for the analysis of unculturable organisms and viruses. Viruses that target bacteria and archaea play important roles in the microbial diversity of various ecosystems. Here we show that Methanosarcina virus MV (MetMV), the second Methanosarcina sp. virus with a completely determined genome, is characteristic of hydrocarbon pollution in environmental (soil and water) samples. It was highly abundant in Hungarian hydrocarbon polluted samples and its genome was also present in the NCBI SRA database containing reads from hydrocarbon polluted samples collected in Canada, indicating the stability of its niche and the marker feature of this virus. MetMV, as the only currently identified marker virus for pollution in environmental samples, could contribute to the understanding of the complicated network of prokaryotes and their viruses driving the decomposition of environmental pollutants.


Subject(s)
Archaea/virology , Archaeal Viruses/isolation & purification , Environmental Pollution/analysis , Hydrocarbons/analysis , Archaea/isolation & purification , Archaeal Viruses/genetics , Canada , DNA, Viral/chemistry , DNA, Viral/metabolism , Genome, Viral , Hungary , Soil Microbiology , Water Microbiology
3.
Microbiol Resour Announc ; 8(27)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31270189

ABSTRACT

Xanthomonas oryzae pv. oryzae is the causative agent of bacterial leaf blight of rice. The application of bacteriophages may provide an effective tool against this bacterium. Here, we report the complete genome sequences of 10 newly isolated OP2-like X. oryzae pv. oryzae bacteriophages.

4.
Appl Environ Microbiol ; 82(7): 2039-2049, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801573

ABSTRACT

[NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Enzymologic , Hydrogenase/metabolism , Thiocapsa roseopersicina/enzymology , Thiosulfates/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Hydrogen/metabolism , Hydrogenase/genetics , Thiocapsa roseopersicina/genetics , Thiocapsa roseopersicina/metabolism
5.
Bioresour Technol ; 177: 375-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481804

ABSTRACT

Stability of biogas production is highly dependent on the microbial community composition of the bioreactors. This composition is basically determined by the nature of biomass substrate and the physical-chemical parameters of the anaerobic digestion. Operational temperature is a major factor in the determination of the anaerobic degradation process. Next-generation sequencing (NGS)-based metagenomic approach was used to monitor the organization and operation of the microbial community throughout an experiment where mesophilic reactors (37°C) were gradually switched to thermophilic (55°C) operation. Temperature adaptation resulted in a clearly thermophilic community having a generally decreased complexity compared to the mesophilic system. A temporary destabilization of the system was observed, indicating a lag phase in the community development in response to temperature stress. Increased role of hydrogenotrophic methanogens under thermophilic conditions was shown, as well as considerably elevated levels of Fe-hydrogenases and hydrogen producer bacteria were observed in the thermophilic system.


Subject(s)
Bacteria/metabolism , Biofuels/microbiology , Hydrogen/metabolism , Methane/biosynthesis , Temperature , Adaptation, Physiological , Bioreactors/microbiology , Fatty Acids, Volatile/analysis , Hydrogenase/metabolism , Phylogeny , Stress, Physiological
6.
Appl Environ Microbiol ; 76(15): 5113-23, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20543059

ABSTRACT

Three functional NiFe hydrogenases were previously characterized in Thiocapsa roseopersicina BBS: two of them are attached to the periplasmic membrane (HynSL and HupSL), and one is localized in the cytoplasm (HoxEFUYH). The ongoing genome sequencing project revealed the presence of genes coding for another soluble Hox-type hydrogenase enzyme (hox2FUYH). Hox2 is a heterotetrameric enzyme; no indication for an additional subunit was found. Detailed comparative in vivo and in vitro activity and expression analyses of HoxEFUYH (Hox1) and the newly discovered Hox2 enzyme were performed. Functional differences between the two soluble NiFe hydrogenases were disclosed. Hox1 seems to be connected to both sulfur metabolism and dark/photofermentative processes. The bidirectional Hox2 hydrogenase was shown to be metabolically active under specific conditions: it can evolve hydrogen in the presence of glucose at low sodium thiosulfate concentration. However, under nitrogen-fixing conditions, it can oxidize H(2) but less than the other hydrogenases in the cell.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogenase/genetics , Hydrogenase/metabolism , Thiocapsa roseopersicina/enzymology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Profiling , Glucose/metabolism , Hydrogen/metabolism , Molecular Sequence Data , Oxidation-Reduction , Protein Multimerization , Sequence Analysis, DNA , Thiosulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...