Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 1162023 Mar.
Article in English | MEDLINE | ID: mdl-38706788

ABSTRACT

Acute tympanic membrane perforations primarily occur due to injury or infection in humans. In acute cases, nearly 80-94 % of the perforations heal spontaneously. In chronic cases, non-surgical treatment becomes significantly limited, and the perforation can be restored only by myringoplasty. In addition to classical grafts such as the fascia or cartilage, promising results have been reported with various biological materials including silk or acellular collagen. However, despite of all the efforts, healing remains insufficient. Consequentially, a need for substances which actively promote tympanic cell migration and proliferation is deemed essential. In our study, we utilized Thymosin beta-4 (TB4), a 43aa peptide possessing many regenerative properties in various organ systems. Our aim was to reveal the impact of externally administered TB4 regarding impairments of the middle ear, particularly the tympanic membrane. We harvested tympanic membranes from adult mice and treated these with TB4 or PBS on both collagen gel matrixes and in the form of floating, ex vivo explants. Cell migration and proliferation was measured, while immunocytochemical analyses were performed to determine cell type and the nature of the targeted molecules. We discovered the peptide affects the behavior of epidermal and epithelial cells of the tympanic membrane in vitro. Moreover, as our initial results imply, it is not the differentiated, yet most likely the local epidermal progenitor cells which are the primary targets of the molecule. Our present results unveil a new, thus far undiscovered field regarding clinical utilization for TB4 in the future.


Subject(s)
Thymosin , Tympanic Membrane , Wound Healing , Animals , Humans , Male , Mice , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/metabolism , Ear, Middle/pathology , Epithelial Cells , Mice, Inbred C57BL , Thymosin/therapeutic use , Tympanic Membrane/pathology , Tympanic Membrane Perforation/drug therapy , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL