Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Sci Total Environ ; 811: 152214, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34890661

ABSTRACT

Consumption of seafood brings health benefits but may increase the ingestion of contaminants. Compared with other ethnic groups in the U.S., Asians consume seafood more frequently. However, there is little information about how culturally specific fish consumption contributes to exposure to toxicants. In this work, we surveyed fish consumption among Chinese, Korean and Vietnamese communities and purchased 103 seafood samples from local markets in Chicago. Each sample was analyzed for mercury (Hg) and 92 organic chemicals including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus and related compounds (DPs). The rank order of pollutant concentration in all samples was Hg â‰« Σ66PCBs > Σ17OCPs > Σ8PBDEs > Σ8DPs. Positive correlations were noted among most contaminant groups. Bluefish, pike and tuna steak had the highest mean Hg (>1 mg/kg). The mean Σ66PCBs was highest in pike and bluefish (>100 ng/g) followed by pollock and mackerel (>40 ng/g). Overall, octopus, shrimp and tilapia were the least contaminated; while pike, bluefish, and pollock were the most contaminated. Omega-3 fatty acids were more strongly affiliated with the organic contaminants than mercury. A risk assessment identified seven types of fish that should have consumption limitations and six that should not be consumed. For these seafoods, consumption advice based on Hg levels would adequately protect health. In the survey participants, 17% of seafood mass consumed is from types of fish that should be limited to 1 or 2 meals/week, while 7% of the seafood mass consumed comes from types that should not be consumed at all. This work adds additional contaminants to the profile of health risks resulting from fish consumption among Asian Americans, which can be used in interventions aimed at conserving consumption of healthy fish while avoiding contaminants.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Asian People , Chicago , Fishes , Food Contamination/analysis , Humans , Polychlorinated Biphenyls/analysis , Seafood/analysis , United States , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 55(6): 3612-3623, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33629845

ABSTRACT

Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.


Subject(s)
Mercury , Bacillus subtilis , Escherichia coli , Food Chain , Mercury/toxicity , X-Ray Absorption Spectroscopy
4.
Environ Sci Technol ; 55(3): 1527-1534, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33476127

ABSTRACT

Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified in vivo, yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)4] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources. In addition, high energy-resolution X-ray absorption spectroscopy (HR-XANES) and chromatography-inductively coupled plasma mass spectrometry of the waterbird liver support the binding of Hg(Sec)4 to selenoprotein P and biomineralization of Hg(Sec)4 to chemically inert nanoparticulate mercury selenide (HgSe). The results provide a foundation for understanding mercury detoxification in higher organisms and suggest that the identified MeHgCys to Hg(Sec)4 demethylation pathway is common in nature.


Subject(s)
Mercury , Methylmercury Compounds , Oligochaeta , Animals , Birds , Demethylation , Humans
5.
Environ Sci Technol ; 53(9): 4880-4891, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30719924

ABSTRACT

The freshwater cyprinid Tanichthys albonubes was used to assess the bioavailability of divalent mercury (Hg(II)) complexed in dissolved organic matter (DOM) to fish. The fish acquired 0.3 to 2.2 µg Hg/g dry weight after 8 weeks in aquaria containing DOM from a Carex peat with complexed mercury at initial concentrations of 14 nM to 724 nM. Changes in the relative proportions of dithiolate Hg(SR)2 and nanoparticulate ß-HgS in the DOM, as quantified by high energy-resolution XANES (HR-XANES) spectroscopy, indicate that Hg(SR)2 complexes either produced by microbially induced dissolution of nanoparticulate ß-HgS in the DOM or present in the original DOM were the forms of mercury that entered the fish. In the fish with 2.2 µg Hg/g, 84 ± 8% of Hg(II) was bonded to two axial thiolate ligands and one or two equatorial N/O electron donors (Hg[(SR)2+(N/O)1-2] coordination), and 16% had a Hg(SR)4 coordination, as determined by HR-XANES. For comparison, fish exposed to Hg2+ from 40 nM HgCl2 contained 10.4 µg Hg/g in the forms of dithiolate (20 ± 10%) and tetrathiolate (23 ± 10%) complexes, and also Hg xS y clusters (57 ± 15%) having a ß-HgS-type local structure and a dimension that exceeded the size of metallothionein clusters. There was no evidence of methylmercury in the fish or DOM within the 10% uncertainty of the HR-XANES. Together, the results indicate that inorganic Hg(II) bound to DOM is a source of mercury to biota with dithiolate Hg(SR)2 complexes as the immediate species bioavailable to fish, and that these complexes transform in response to cellular processes.


Subject(s)
Mercury , Methylmercury Compounds , Animals , Seafood , Soil , X-Ray Absorption Spectroscopy
6.
Nat Commun ; 8: 15826, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28598428

ABSTRACT

Ion exchange at charged solid-liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)-water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.

7.
Environ Sci Technol ; 51(7): 3630-3639, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28248098

ABSTRACT

Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.


Subject(s)
Sulfur , Water Pollutants, Chemical , Fresh Water/chemistry , Sulfates , Wetlands
8.
Sci Rep ; 6: 39359, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27991599

ABSTRACT

Metal sulfide minerals are assumed to form naturally at ambient conditions via reaction of a metallic element with (poly)sulfide ions, usually produced by microbes in oxygen-depleted environments. Recently, the formation of mercury sulfide (ß-HgS) directly from linear Hg(II)-thiolate complexes (Hg(SR)2) in natural organic matter and in cysteine solutions was demonstrated under aerated conditions. Here, a detailed description of this non-sulfidic reaction is provided by computations at a high level of molecular-orbital theory. The HgS stoichiometry is obtained through the cleavage of the S-C bond in one thiolate, transfer of the resulting alkyl group (R') to another thiolate, and subsequent elimination of a sulfur atom from the second thiolate as a thioether (RSR'). Repetition of this mechanism leads to the formation of RS-(HgS)n-R chains which may self-assemble in parallel arrays to form cinnabar (α-HgS), or more commonly, quickly condense to four-coordinate metacinnabar (ß-HgS). The mechanistic pathway is thermodynamically favorable and its predicted kinetics agrees with experiment. The results provide robust theoretical support for the abiotic natural formation of nanoparticulate HgS under oxic conditions and in the absence of a catalyst, and suggest a new route for the (bio)synthesis of HgS nanoparticles with improved technological properties.

9.
Environ Sci Technol ; 50(19): 10721-10729, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27676331

ABSTRACT

Humans are contaminated by mercury in different forms from different sources. In practice, contamination by methylmercury from fish consumption is assessed by measuring hair mercury concentration, whereas exposure to elemental and inorganic mercury from other sources is tested by analysis of blood or urine. Here, we show that diverse sources of hair mercury at concentrations as low as 0.5 ppm can be individually identified by specific coordination to C, N, and S ligands with high energy-resolution X-ray absorption spectroscopy. Methylmercury from seafood, ethylmercury used as a bactericide, inorganic mercury from dental amalgams, and exogenously derived atmospheric mercury bind in distinctive intermolecular configurations to hair proteins, as supported by molecular modeling. A mercury spike located by X-ray nanofluorescence on one hair strand could even be dated to removal of a single dental amalgam. Chemical forms of other known or putative toxic metals in human tissues could be identified by this approach with potential broader applications to forensic, energy, and materials science.


Subject(s)
Environmental Monitoring , Mercury , Animals , Fishes/metabolism , Food Contamination , Hair/chemistry , Humans , Methylmercury Compounds , Seafood
10.
Langmuir ; 32(2): 477-86, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26681160

ABSTRACT

The formation of Al (oxy)hydroxide on the basal surface of muscovite mica was investigated to understand how the structure of the substrate controls the nucleation and growth of secondary phases. Atomic force microscopy images showed that solid phases nucleated on the surface initially as two-dimensional islands that were ≤10 Å in height and ≤200 Å in diameter after 16-50 h of reaction in a 100 µM AlCl3 solution at pH 4.2 at room temperature. High-resolution X-ray reflectivity data indicated that these islands were gibbsite layers whose basic unit is composed of a plane of Al ions octahedrally coordinated to oxygen or hydroxyl groups. The formation of gibbsite layers is likely favored because of the structural similarity between its basal plane and the underlying mica surface. After 700-2000 h of reaction, a thicker and continuous film had formed on top of the initial gibbsite layers. X-ray diffraction data showed that this film was composed of diaspore that grew predominantly with its [040] and [140] crystallographic directions oriented along the muscovite [001] direction. These results show the structural characteristics of the muscovite (001) and Al (oxy)hydroxide film interface where presumed epitaxy had facilitated nucleation of metastable gibbsite layers which acted as a structural anchor for the subsequent growth of thermodynamically stable diaspore grown from a mildly acidic and Al-rich solution.

11.
J Occup Environ Med ; 57(12): 1325-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26641830

ABSTRACT

OBJECTIVES: The aim of the study was to characterize the risk for elevated mercury (Hg) from fish consumption among Asians in Chicago. Consumption of fish contaminated with methyl Hg (MeHg) can affect the neurodevelopment in children and cardiovascular disease risk in adults. METHODS: We collected fish consumption information and hair samples for Hg at two health fairs. We purchased fish from Asian fish markets. RESULTS: Geometric mean hair Hg from 71 participants was 0.58  µg/g, with 28% overall and 29% of women of childbearing age having hair Hg levels at least 1  µg/g; 20% ate fish 4 or more times/wk. Tuna consumption and non-Chinese Asian ethnicity were associated with elevated Hg. Hg levels in purchased fish were generally low. CONCLUSIONS: Our study confirms other findings that, compared with estimates of the general US population, Asians are at higher risk of elevated MeHg because of frequent fish consumption.


Subject(s)
Asian , Diet/ethnology , Environmental Exposure/statistics & numerical data , Hair/chemistry , Mercury/analysis , Seafood , Water Pollutants, Chemical/analysis , Adult , Aged , Aged, 80 and over , Chicago , Diet/statistics & numerical data , Diet Surveys , Environmental Exposure/analysis , Environmental Monitoring , Female , Humans , Male , Middle Aged , Pilot Projects
12.
Inorg Chem ; 54(24): 11776-91, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26651871

ABSTRACT

We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of input files are provided as Supporting Information .

13.
Environ Sci Technol ; 49(16): 9787-96, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26168020

ABSTRACT

Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury-sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury-sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.


Subject(s)
Mercury Compounds/analysis , Mercury/analysis , Organic Chemicals/chemistry , Sulfhydryl Compounds/chemistry , Models, Theoretical , Nanoparticles/chemistry , Soil/chemistry , Sulfur/analysis , Thermodynamics , Water/chemistry , X-Ray Absorption Spectroscopy
14.
Environ Sci Technol ; 48(16): 9263-9, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25007415

ABSTRACT

Lead (Pb) is a common environmental pollutant, and its transport in surface waters and groundwater is controlled in part by sorption and precipitation reactions at mineral surfaces. Using in situ specular and resonant anomalous X-ray reflectivity measurements, we investigated the interaction of the calcite (104) surface with a dilute Pb- and EDTA-bearing solution that is slightly undersaturated with respect to calcite. The X-ray results reveal Pb coherently substituting for Ca in the near-surface layers of strained calcite with Pb/(Pb + Ca) atom fractions as high as 0.28 in the outermost layer. The larger ionic radius of Pb(2+) relative to Ca(2+) is accommodated in calcite by vertical displacements of Pb relative to the Ca site. In situ atomic force microscopy images obtained during the reaction suggest that Pb incorporation below the surface occurs after initial dissolution followed by regrowth of a strained epitaxial Pb-rich calcite solid-solution at the calcite (104)-water interface. This process could produce a widespread host phase for Pb in groundwater aquifers and soil pore fluids.


Subject(s)
Calcium Carbonate/chemistry , Lead/chemistry , Water Pollutants, Chemical/chemistry , Edetic Acid/chemistry , Solutions , Water/chemistry
15.
Metallomics ; 5(12): 1674-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24185827

ABSTRACT

Root cell walls accumulate metal cations both during acquisition from the environment and removal from the protoplast to avoid toxicity, but molecular forms of the metals under field conditions remain elusive. We have identified how copper is bound to cell walls of intact roots of native Thlaspi arvense by combining synchrotron X-ray fluorescence and absorption techniques (XANES and EXAFS) at the nano-, micro-, and bulk scales. The plants grew naturally in sediment in a stormwater runoff basin at copper concentrations typical of urban ecosystems. About 90% of acquired copper is bound in vivo to cell walls as a unique five-coordinate Cu(II)-bis(L-histidinato) complex with one L-histidine behaving as a tridentate ligand (histamine-like chelate) and the other as a bidentate ligand (glycine-like chelate). Tridentate binding of Cu(II) would provide thermodynamic stability to protect cells against copper toxicity, and bidentate binding may enable kinetic lability along the cell wall through protein-protein docking with the non-bonded imidazole group of histidine residues. EXAFS spectra are provided as ESI to facilitate further identification of Cu-histidine and distinction of Cu-N from Cu-O bonds in biomolecules.


Subject(s)
Cell Wall/metabolism , Coordination Complexes/metabolism , Copper/metabolism , Histidine/metabolism , Plant Roots/metabolism , Thlaspi/metabolism , Coordination Complexes/chemistry , Copper/chemistry , Ecosystem , Histidine/chemistry , Models, Molecular , Thlaspi/cytology
16.
Langmuir ; 28(23): 8637-50, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22574993

ABSTRACT

The interfacial structure between the muscovite (001) surface and aqueous solutions containing monovalent cations (3 × 10(-3) m Li(+), Na(+), H(3)O(+), K(+), Rb(+), or Cs(+), or 3 × 10(-2) m Li(+) or Na(+)) was measured using in situ specular X-ray reflectivity. The element-specific distribution of Rb(+) was also obtained with resonant anomalous X-ray reflectivity. The results demonstrate complex interdependencies among adsorbed cation coverage and speciation, interfacial hydration structure, and muscovite surface relaxation. Electron-density profiles of the solution near the surface varied systematically and distinctly with each adsorbed cation. Observations include a broad profile for H(3)O(+), a more structured profile for Li(+) and Na(+), and increasing electron density near the surface because of the inner-sphere adsorption of K(+), Rb(+), and Cs(+) at 1.91 ± 0.12, 1.97 ± 0.01, and 2.26 ± 0.01 Å, respectively. Estimated inner-sphere coverages increased from ~0.6 to 0.78 ± 0.01 to ~0.9 per unit cell area with decreasing cation hydration strength for K(+), Rb(+), and Cs(+), respectively. Between 7 and 12% of the Rb(+) coverage occurred as an outer-sphere species. Systematic trends in the vertical displacement of the muscovite lattice were observed within ~40 Å of the surface. These include a <0.1 Å shift of the interlayer K(+) toward the interface that decays into the crystal and an expansion of the tetrahedral-octahedral-tetrahedral layers except for the top layer in contact with solution. The distortion of the top tetrahedral sheet depends on the adsorbed cation, ranging from an expansion (by ~0.05 Å vertically) in 3 × 10(-3)m H(3)O(+) to a contraction (by ~0.1 Å) in 3 × 10(-3) m Cs(+). The tetrahedral tilting angle in the top sheet increases by 1 to 4° in 3 × 10(-3) m Li(+) or Na(+), which is similar to that in deionized water where the adsorbed cation coverages are insufficient for full charge compensation.

17.
Environ Sci Technol ; 45(22): 9574-81, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21970790

ABSTRACT

The role of fulvic acid (FA) in modifying the adsorption mode and sorption capacity of divalent metal cations on the muscovite (001) surface was evaluated by measuring the uptake of Cu(2+), Zn(2+), and Pb(2+) from 0.01 m solutions at pH 3.7 with FA using in situ resonant anomalous X-ray reflectivity. The molecular-scale distributions of these cations combined with those previously observed for Hg(2+), Sr(2+), and Ba(2+) indicate metal uptake patterns controlled by cation-FA binding strength and cation hydration enthalpy. For weakly hydrated cations the presence of FA increased metal uptake by approximately 60-140%. Greater uptake corresponded with increasing cation-FA affinity (Ba(2+) ≈ Sr(2+) < Pb(2+) < Hg(2+)). This trend is associated with differences in the sorption mechanism: Ba(2+) and Sr(2+) sorbed in the outer portion of the FA film whereas Pb(2+) and Hg(2+) complexed with FA effectively throughout the film. The more strongly hydrated Cu(2+) and Zn(2+) adsorbed as two distinct outer-sphere complexes on the muscovite surface, with minimal change from their distribution without FA, indicating that their strong hydration impedes additional binding to the FA film despite their relatively strong affinity for FA.


Subject(s)
Aluminum Silicates/chemistry , Benzopyrans/chemistry , Metals, Heavy/isolation & purification , Adsorption , Surface Properties
18.
Environ Sci Technol ; 45(17): 7298-306, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21809860

ABSTRACT

Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (S(red)/Hg) between 220 and 1140, is a Hg(4)S(x) type of cluster with each Hg atom bonded to two S atoms at 2.34 Å and one S at 2.53 Å, and all Hg atoms 4.12 Å apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 Å and about six C atoms at 2.97 to 3.28 Å, occurred at S(red)/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)(2) unit with Hg-S bond lengths of 2.34 Å at S(red)/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter.


Subject(s)
Mercury/chemistry , Metallothionein/chemistry , Soil/chemistry , Sulfur/chemistry , Animals , Florida , Models, Molecular , Sulfhydryl Compounds/chemistry , X-Ray Absorption Spectroscopy/methods
19.
Langmuir ; 26(22): 16647-51, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20932042

ABSTRACT

Charged materials in aqueous systems interact according to their interfacial properties, typically described by the electrical double layer (EDL). Distributions of divalent metal cations at the muscovite (001)-solution interface observed using resonant anomalous X-ray reflectivity demonstrate an unexpected complexity with respect to the EDL structure. Three forms of adsorbed cations can coexist: the classical inner-sphere and outer-sphere complexes and a third "extended" outer-sphere complex located farther from the surface. Their relative proportions are controlled by the energy balance among cation hydration, interface hydration, and electrostatic attraction. Systematic trends in coverage and position establish the defining role of cation hydration in stabilizing the multiple coexisting species.

20.
Environ Sci Technol ; 43(14): 5295-300, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19708356

ABSTRACT

Evidence is increasing for the mobility and bioavailability of aqueous mercury(II) species being related to the interactions of mercury with dissolved organic matter (DOM). Here, we assess the relative roles of the mineral surface and DOM in controlling mercury(II) uptake at the muscovite (001)-solution interface using interface-specific X-ray reflectivity combined with element-specific resonant anomalous X-ray reflectivity. Experiments were performed with single crystals of muscovite and solutions of 100 mg/kg Elliott Soil Fulvic Acid II and 0.5-1 x 10(-3) mol/kg Hg(NO3)2 at pH 2-12 Mercury(II) adsorbed from a 1 x 10(-3) mol/kg Hg(II) solution at pH 2 without fulvic acid (FA) as inner- and outer-sphere complexes that compensated 55(4)% of the permanent negative charge of the muscovite surface. The remaining charge presumably was compensated by hydronium. The enhanced uptake of Hg(II) (compensating 128% of the muscovite surface charge) and FA (43% more adsorbed compared to the amount from a similar solution without Hg), along with a broader distribution of Hg(II) at the interface, occurred by adsorption from a premixed solution of 1 x 10(-3) mol/kg Hg(NO3)2 and 100 mg/kg FA at pH 2. Adsorption of Hg(II) and FA, likely as complexes, decreased significantly as pH increased from 3.7 to 12 in solutions of 0.5 x 10(-3) mol/kg Hg(NO3)2 and 100 mg/kg FA. Preadsorbed FA molecules provide different binding environments and stability for Hg(II) than dissolved FA, which may be attributed to conformational differences, fractionation, or kinetic effects in the presence of the mineral surface, at least at these relatively high concentrations of aqueous Hg(II).


Subject(s)
Aluminum Silicates/chemistry , Benzopyrans/chemistry , Mercury/chemistry , Environmental Pollutants/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Solutions/chemistry , Surface Properties , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...