Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Metab ; 4(11): 1532-1550, 2022 11.
Article in English | MEDLINE | ID: mdl-36344765

ABSTRACT

Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.


Subject(s)
Drosophila Proteins , Gastrointestinal Hormones , Female , Animals , Drosophila , Appetite , Sugars , Drosophila Proteins/genetics , Mammals
2.
Nat Commun ; 13(1): 692, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121731

ABSTRACT

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Subject(s)
Drosophila Proteins/metabolism , Eating/physiology , Energy Metabolism/physiology , Gastrointestinal Hormones/metabolism , Homeostasis , Nutrients/metabolism , Somatostatin/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Eating/genetics , Energy Metabolism/genetics , Enteroendocrine Cells/metabolism , Gastrointestinal Hormones/genetics , Gene Knockout Techniques , Humans , Hypoglycemia/genetics , Hypoglycemia/metabolism , Insect Hormones/genetics , Insect Hormones/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Somatostatin/genetics , Survival Analysis
3.
Nat Commun ; 12(1): 5178, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462441

ABSTRACT

Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neuropeptides/metabolism , Nutrients/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Energy Metabolism , Female , Homeostasis , Insect Hormones/metabolism , Longevity , Male , Neuropeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
4.
Development ; 147(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32631830

ABSTRACT

The activation of a neuroendocrine system that induces a surge in steroid production is a conserved initiator of the juvenile-to-adult transition in many animals. The trigger for maturation is the secretion of brain-derived neuropeptides, yet the mechanisms controlling the timely onset of this event remain ill-defined. Here, we show that a regulatory feedback circuit controlling the Drosophila neuropeptide Prothoracicotropic hormone (PTTH) triggers maturation onset. We identify the Ecdysone Receptor (EcR) in the PTTH-expressing neurons (PTTHn) as a regulator of developmental maturation onset. Loss of EcR in these PTTHn impairs PTTH signaling, which delays maturation. We find that the steroid ecdysone dose-dependently affects Ptth transcription, promoting its expression at lower concentrations and inhibiting it at higher concentrations. Our findings indicate the existence of a feedback circuit in which rising ecdysone levels trigger, via EcR activity in the PTTHn, the PTTH surge that generates the maturation-inducing ecdysone peak toward the end of larval development. Because steroid feedback is also known to control the vertebrate maturation-inducing hypothalamic-pituitary-gonadal axis, our findings suggest an overall conservation of the feedback-regulatory neuroendocrine circuitry that controls the timing of maturation initiation.


Subject(s)
Drosophila Proteins/metabolism , Insect Hormones/metabolism , Receptors, Steroid/metabolism , Animals , Body Size , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Ecdysterone/pharmacology , Gene Expression Regulation, Developmental/drug effects , Insect Hormones/antagonists & inhibitors , Insect Hormones/genetics , Larva/growth & development , Larva/metabolism , Metamorphosis, Biological , Microscopy, Fluorescence , Neurons/metabolism , RNA Interference , RNA, Guide, Kinetoplastida/metabolism , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/genetics , Signal Transduction
5.
PLoS Genet ; 16(4): e1008727, 2020 04.
Article in English | MEDLINE | ID: mdl-32339168

ABSTRACT

The human 22q11.2 chromosomal deletion is one of the strongest identified genetic risk factors for schizophrenia. Although the deletion spans a number of known genes, the contribution of each of these to the 22q11.2 deletion syndrome (DS) is not known. To investigate the effect of individual genes within this interval on the pathophysiology associated with the deletion, we analyzed their role in sleep, a behavior affected in virtually all psychiatric disorders, including the 22q11.2 DS. We identified the gene LZTR1 (night owl, nowl) as a regulator of night-time sleep in Drosophila. In humans, LZTR1 has been associated with Ras-dependent neurological diseases also caused by Neurofibromin-1 (Nf1) deficiency. We show that Nf1 loss leads to a night-time sleep phenotype nearly identical to that of nowl loss and that nowl negatively regulates Ras and interacts with Nf1 in sleep regulation. Furthermore, nowl is required for metabolic homeostasis, suggesting that LZTR1 may contribute to the genetic susceptibility to obesity associated with the 22q11.2 DS. Knockdown of nowl or Nf1 in GABA-responsive sleep-promoting neurons elicits the sleep phenotype, and this defect can be rescued by increased GABAA receptor signaling, indicating that Nowl regulates sleep through modulation of GABA signaling. Our results suggest that nowl/LZTR1 may be a conserved regulator of GABA signaling important for normal sleep that contributes to the 22q11.2 DS.


Subject(s)
22q11 Deletion Syndrome/genetics , Adaptor Proteins, Signal Transducing/genetics , Drosophila Proteins/genetics , GABAergic Neurons/metabolism , Neurofibromin 1/genetics , Schizophrenia/genetics , Sleep/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Drosophila , Drosophila Proteins/metabolism , GABAergic Neurons/physiology , Humans , Neurofibromin 1/metabolism , Receptors, GABA-A/metabolism , Transcription Factors/genetics
6.
Dev Cell ; 48(5): 659-671.e4, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30799225

ABSTRACT

Steroid hormones are important signaling molecules that regulate growth and drive the development of many cancers. These factors act as long-range signals that systemically regulate the growth of the entire organism, whereas the Hippo/Warts tumor-suppressor pathway acts locally to limit organ growth. We show here that autophagy, a pathway that mediates the degradation of cellular components, also controls steroid production. This process is regulated by Warts (in mammals, LATS1/2) signaling, via its effector microRNA bantam, in response to nutrients. Specifically, autophagy-mediated mobilization and trafficking of the steroid precursor cholesterol from intracellular stores controls the production of the Drosophila steroid ecdysone. Furthermore, we also show that bantam regulates this process via the ecdysone receptor and Tor signaling, identifying pathways through which bantam regulates autophagy and growth. The Warts pathway thus promotes nutrient-dependent systemic growth during development by autophagy-dependent steroid hormone regulation (ASHR). These findings uncover an autophagic trafficking mechanism that regulates steroid production.


Subject(s)
Autophagy/physiology , Cell Movement/physiology , Cholesterol/metabolism , Ecdysone/metabolism , Gene Expression Regulation, Developmental , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , MicroRNAs/genetics , Nuclear Proteins/metabolism , Trans-Activators/metabolism
7.
PLoS Genet ; 14(12): e1007623, 2018 12.
Article in English | MEDLINE | ID: mdl-30566533

ABSTRACT

The human 1q21.1 deletion of ten genes is associated with increased risk of schizophrenia. This deletion involves the ß-subunit of the AMP-activated protein kinase (AMPK) complex, a key energy sensor in the cell. Although neurons have a high demand for energy and low capacity to store nutrients, the role of AMPK in neuronal physiology is poorly defined. Here we show that AMPK is important in the nervous system for maintaining neuronal integrity and for stress survival and longevity in Drosophila. To understand the impact of this signaling system on behavior and its potential contribution to the 1q21.1 deletion syndrome, we focused on sleep, an important role of which is proposed to be the reestablishment of neuronal energy levels that are diminished during energy-demanding wakefulness. Sleep disturbances are one of the most common problems affecting individuals with psychiatric disorders. We show that AMPK is required for maintenance of proper sleep architecture and for sleep recovery following sleep deprivation. Neuronal AMPKß loss specifically leads to sleep fragmentation and causes dysregulation of genes believed to play a role in sleep homeostasis. Our data also suggest that AMPKß loss may contribute to the increased risk of developing mental disorders and sleep disturbances associated with the human 1q21.1 deletion.


Subject(s)
AMP-Activated Protein Kinases/genetics , Abnormalities, Multiple/enzymology , Abnormalities, Multiple/genetics , Megalencephaly/enzymology , Megalencephaly/genetics , Neurons/enzymology , Schizophrenia/enzymology , Schizophrenia/genetics , Sleep/genetics , Sleep/physiology , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/deficiency , Animals , Chromosome Deletion , Chromosomes, Human, Pair 1/enzymology , Chromosomes, Human, Pair 1/genetics , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Female , Gene Knockdown Techniques , Genetic Predisposition to Disease , Humans , Learning/physiology , Longevity/genetics , Longevity/physiology , Male , Models, Animal , Neurons/cytology , Risk Factors , Signal Transduction , Sleep Wake Disorders/enzymology , Sleep Wake Disorders/genetics
8.
Curr Biol ; 27(11): 1652-1659.e4, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28528906

ABSTRACT

Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Ecdysone/metabolism , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Organ Size/physiology , Protein Kinases/metabolism , Trans-Activators/metabolism , Animals , Female , Insect Hormones/metabolism , Insulin/metabolism , Larva/physiology , Male , Pupa/physiology , Signal Transduction/physiology , YAP-Signaling Proteins
9.
BMC Biol ; 14: 9, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26847342

ABSTRACT

BACKGROUND: Fast responses can provide a competitive advantage when resources are inhomogeneously distributed. The nematode Caenorhabditis elegans was shown to modulate locomotion on a lawn of bacterial food in serotonin (5-HT)-dependent manners. However, potential roles for serotonergic signaling in responding to food discovery are poorly understood. RESULTS: We found that 5-HT signaling in C. elegans facilitates efficient exploitation in complex environments by mediating a rapid response upon encountering food. Genetic or cellular manipulations leading to deficient serotonergic signaling resulted in gradual responses and defective exploitation of a patchy foraging landscape. Physiological imaging revealed that the NSM serotonergic neurons responded acutely upon encounter with newly discovered food and were key to rapid responses. In contrast, the onset of responses of ADF serotonergic neurons preceded the physical encounter with the food. The serotonin-gated chloride channel MOD-1 and the ortholog of mammalian 5-HT1 metabotropic serotonin receptors SER-4 acted in synergy to accelerate decision-making. The relevance of responding rapidly was demonstrated in patchy environments, where the absence of 5-HT signaling was detrimental to exploitation. CONCLUSIONS: Our results implicate 5-HT in a novel form of decision-making, demonstrate its fitness consequences, suggest that NSM and ADF act in concert to modulate locomotion in complex environments, and identify the synergistic action of a channel and a metabotropic receptor in accelerating C. elegans decision-making.


Subject(s)
Appetitive Behavior , Caenorhabditis elegans/physiology , Serotonin/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Environment , Locomotion , Signal Transduction
10.
Cancer Biol Ther ; 17(1): 91-103, 2016.
Article in English | MEDLINE | ID: mdl-26574927

ABSTRACT

We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Cycle Proteins/genetics , Neoplasms/genetics , Nicotine/toxicity , Receptor Protein-Tyrosine Kinases/genetics , Amino Acid Sequence/genetics , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/biosynthesis , Cell Cycle Proteins/biosynthesis , Fertility/genetics , Humans , Locomotion/drug effects , Locomotion/genetics , Mutation , Neoplasms/chemically induced , Neoplasms/pathology , Proto-Oncogene Proteins c-met/biosynthesis , Proto-Oncogene Proteins c-met/genetics , ras Proteins/biosynthesis
11.
Sci Rep ; 5: 17174, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26597056

ABSTRACT

Distinct motor programs can be coupled to refine the repertoire of behavior dynamics. However, mechanisms underlying such coupling are poorly understood. The defecation motor program (DMP) of C. elegans is composed of a succession of body contraction and expulsion steps, performed repeatedly with a period of 50-60 sec. We show that recurring patterns of directed locomotion are executed in tandem with, co-reset, and co-terminate with the DMP cycle. Calcium waves in the intestine and proton signaling were shown to regulate the DMP. We found that genetic manipulations affecting these calcium dynamics regulated the corresponding patterns of directed locomotion. Moreover, we observed the initiation of a recurring locomotion pattern 10 seconds prior to the posterior body contraction, suggesting that the synchronized motor program may initiate prior to the DMP. This study links two multi-step motor programs executed by C. elegans in synchrony, utilizing non-neuronal tissue to drive directed locomotion.


Subject(s)
Caenorhabditis elegans/physiology , Defecation/physiology , Locomotion , Animals , Calcium Signaling , Exocytosis , Intestines/physiology , Secretory Vesicles/metabolism
12.
PLoS Comput Biol ; 11(10): e1004517, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26439258

ABSTRACT

This paper presents a method for automated detection of complex (non-self-avoiding) postures of the nematode Caenorhabditis elegans and its application to analyses of locomotion defects. Our approach is based on progressively detailed statistical models that enable detection of the head and the body even in cases of severe coilers, where data from traditional trackers is limited. We restrict the input available to the algorithm to a single digitized frame, such that manual initialization is not required and the detection problem becomes embarrassingly parallel. Consequently, the proposed algorithm does not propagate detection errors and naturally integrates in a "big data" workflow used for large-scale analyses. Using this framework, we analyzed the dynamics of postures and locomotion of wild-type animals and mutants that exhibit severe coiling phenotypes. Our approach can readily be extended to additional automated tracking tasks such as tracking pairs of animals (e.g., for mating assays) or different species.


Subject(s)
Algorithms , Caenorhabditis elegans/physiology , Image Interpretation, Computer-Assisted/methods , Locomotion/physiology , Posture/physiology , Whole Body Imaging/methods , Animals , Caenorhabditis elegans/anatomy & histology , Computer Simulation , Data Interpretation, Statistical , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
13.
Elife ; 3: e04380, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25474127

ABSTRACT

Biological homeostasis invokes modulatory responses aimed at stabilizing internal conditions. Using tunable photo- and mechano-stimulation, we identified two distinct categories of homeostatic responses during the sleep-like state of Caenorhabditis elegans (lethargus). In the presence of weak or no stimuli, extended motion caused a subsequent extension of quiescence. The neuropeptide Y receptor homolog, NPR-1, and an inhibitory neuropeptide known to activate it, FLP-18, were required for this process. In the presence of strong stimuli, the correlations between motion and quiescence were disrupted for several minutes but homeostasis manifested as an overall elevation of the time spent in quiescence. This response to strong stimuli required the function of the DAF-16/FOXO transcription factor in neurons, but not that of NPR-1. Conversely, response to weak stimuli did not require the function of DAF-16/FOXO. These findings suggest that routine homeostatic stabilization of sleep may be distinct from homeostatic compensation following a strong disturbance.


Subject(s)
Behavior, Animal , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Homeostasis , Sleep/physiology , Animals , Behavior, Animal/radiation effects , Caenorhabditis elegans/radiation effects , Caenorhabditis elegans Proteins/metabolism , Homeostasis/radiation effects , Light , Locomotion/radiation effects , Neuropeptides/metabolism , Photic Stimulation , Physical Stimulation , Posture/physiology , Receptors, Neuropeptide Y/metabolism , Signal Transduction/radiation effects , Sleep/radiation effects
14.
PLoS One ; 9(7): e101162, 2014.
Article in English | MEDLINE | ID: mdl-25025212

ABSTRACT

A characteristic posture is considered one of the behavioral hallmarks of sleep, and typically includes functional features such as support for the limbs and shielding of sensory organs. The nematode C. elegans exhibits a sleep-like state during a stage termed lethargus, which precedes ecdysis at the transition between larval stages. A hockey-stick-like posture is commonly observed during lethargus. What might its function be? It was previously noted that during lethargus, C. elegans nematodes abruptly rotate about their longitudinal axis. Plausibly, these "flips" facilitate ecdysis by assisting the disassociation of the old cuticle from the new one. We found that body-posture during lethargus was established using a stereotypical motor program and that body bends during lethargus quiescence were actively maintained. Moreover, flips occurred almost exclusively when the animals exhibited a single body bend, preferentially in the anterior or mid section of the body. We describe a simple biomechanical model that imposes the observed lengths of the longitudinally directed body-wall muscles on an otherwise passive elastic rod. We show that this minimal model is sufficient for generating a rotation about the anterior-posterior body axis. Our analysis suggests that posture during lethargus quiescence may serve a developmental role in facilitating flips and that the control of body wall muscles in anterior and posterior body regions are distinct.


Subject(s)
Nematoda/physiology , Posture , Sleep , Animals , Behavior, Animal , Caenorhabditis elegans/physiology , Locomotion
15.
Methods ; 68(3): 500-7, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24642199

ABSTRACT

The nematode Caenorhabditis (C.) elegans, a long time work horse for behavioral genetic studies of locomotion, has recently been studied for quiescent behavior. Methods previously established for the study of C. elegans locomotion are not well-suited for the study of quiescent behavior. We describe in detail two computer vision approaches to distinguish quiescent from movement bouts focusing on the behavioral quiescence that occurs during fourth larval stage lethargus, a transition stage between the larva and the adult. The first is the frame subtraction method, which consists of subtraction of temporally adjacent images as a sensitive way to detect motion. The second, which is more computationally intensive, is the posture analysis method, which consists of analysis of the rate of local angle change of the animal's body. Quiescence measurements should be done continuously while minimizing sensory perturbation of the animal.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans/genetics , Locomotion/physiology , Animals , Caenorhabditis elegans/physiology , Larva/genetics , Larva/physiology , Locomotion/genetics
16.
BMC Neurosci ; 14: 156, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341457

ABSTRACT

BACKGROUND: To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. RESULTS: ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. CONCLUSION: C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.


Subject(s)
Caenorhabditis elegans/physiology , Interneurons/physiology , Mechanoreceptors/physiology , Animals , Behavior, Animal/physiology , Caenorhabditis elegans/cytology , Interneurons/cytology , Mechanoreceptors/cytology , Touch/physiology
17.
Elife ; 2: e00782, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23840929

ABSTRACT

Despite their simplicity, longitudinal studies of invertebrate models are rare. We thus sought to characterize behavioral trends of Caenorhabditis elegans, from the mid fourth larval stage through the mid young adult stage. We found that, outside of lethargus, animals exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased Gαs signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased Gαs signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A (PKA) stabilizes active wakefulness, at least in part through two of its downstream targets: neuropeptide release and CREB. However, during lethargus, when active wakefulness is strongly suppressed, the native role of PKA signaling in modulating locomotion and quiescence may be minor. DOI:http://dx.doi.org/10.7554/eLife.00782.001.


Subject(s)
Caenorhabditis elegans/physiology , GTP-Binding Proteins/metabolism , Larva/physiology , Locomotion , Signal Transduction , Animals , Behavior, Animal , Body Patterning , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Larva/metabolism , Longitudinal Studies
18.
Sleep ; 36(3): 385-95, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23449971

ABSTRACT

STUDY OBJECTIVES: The nematode C. elegans develops through four larval stages before it reaches adulthood. At the transition between stages and before it sheds its cuticle, it exhibits a sleep-like behavior during a stage termed lethargus. The objectives of this study were to characterize in detail behavioral patterns and physiological activity of a command interneuron during lethargus. MEASUREMENTS AND RESULTS: We found that lethargus behavior was composed of bouts of quiescence and motion. The duration of individual bouts ranged from 2 to 100 seconds, and their dynamics exhibited local homeostasis: the duration of bouts of quiescence positively correlated with the duration of bouts of motion that immediately preceded them in a cAMP-dependent manner. In addition, we identified a characteristic body posture during lethargus: the average curvature along the body of L4 lethargus larvae was lower than that of L4 larvae prior to lethargus, and the positions of body bends were distributed non-uniformly along the bodies of quiescent animals. Finally, we found that the AVA interneurons, a pair of backward command neurons, mediated locomotion patterns during L4 lethargus in similar fashion to their function in L4 larvae prior to lethargus. Interestingly, in both developmental stages backward locomotion was initiated and terminated asymmetrically with respect to AVA intraneuronal calcium concentration. CONCLUSIONS: The complex behavioral patterns during lethargus can be dissected to quantifiable elements, which exhibit rich temporal dynamics and are actively regulated by the nervous system. Our findings support the identification of lethargus as a sleep-like state. CITATION: Iwanir S; Tramm N; Nagy S; Wright C; Ish D; Biron D. The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. SLEEP 2013;36(3):385-395.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans/physiology , Homeostasis/physiology , Neurons/physiology , Posture/physiology , Sleep/physiology , Animals , Caenorhabditis elegans/growth & development , Interneurons , Larva/physiology , Locomotion/physiology , Signal Transduction
19.
J Biol Chem ; 285(34): 26608-17, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20538587

ABSTRACT

Without guidance cues, cytoskeletal motors would traffic components to the wrong destination with disastrous consequences for the cell. Recently, we identified a motor protein, myosin X, that identifies bundled actin filaments for transport. These bundles direct myosin X to a unique destination, the tips of cellular filopodia. Because the structural and kinetic features that drive bundle selection are unknown, we employed a domain-swapping approach with the nonselective myosin V to identify the selectivity module of myosin X. We found a surprising role of the myosin X tail region (post-IQ) in supporting long runs on bundles. Moreover, the myosin X head is adapted for initiating processive runs on bundles. We found that the tail is structured and biases the orientation of the two myosin X heads because a targeted insertion that introduces flexibility in the tail abolishes selectivity. Together, these results suggest how myosin motors may manage to read cellular addresses.


Subject(s)
Actins/metabolism , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Myosins/chemistry , Animals , Cattle , Chickens , Movement , Myosin Type V , Myosins/metabolism , Protein Conformation , Protein Structure, Tertiary , Substrate Specificity
20.
Biochemistry ; 48(50): 11834-6, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19928925

ABSTRACT

A peptide fusion tag and accompanying recombinant capture reagents have been developed on the basis of the peptide-PDZ domain interaction and affinity clamps, a new class of affinity reagent. This system allows for single-step purification under mild conditions and stable capture of a tagged protein. The subnanomolar affinity, high force resistance (>30 pN), small size ( approximately 25 kDa, approximately one-sixth of the size of IgG), and monomeric nature of the affinity clamp are all superior features for many applications, in particular single-molecule measurements.


Subject(s)
Myosins/chemistry , Peptide Fragments/chemistry , Affinity Labels , Antibodies, Monoclonal/chemistry , Biotin/chemistry , Humans , Indicators and Reagents , Microscopy, Fluorescence , Myosins/isolation & purification , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Protein Engineering , Recombinant Fusion Proteins/chemistry , Streptavidin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...