Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 711074, 2021.
Article in English | MEDLINE | ID: mdl-34658762

ABSTRACT

Purpose: A former rodent study showed that cerebral traumatic microbleeds (TMBs) may temporarily become invisible shortly after injury when detected by susceptibility weighted imaging (SWI). The present study aims to validate this phenomenon in human SWI. Methods: In this retrospective study, 46 traumatic brain injury (TBI) patients in various forms of severity were included and willingly complied with our strict selection criteria. Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score, Mayo Clinic Classification, contusion number, and total volume were registered. The precise time between trauma and MRI [5 h 19 min to 141 h 54 min, including SWI and fluid-attenuated inversion recovery (FLAIR)] was individually recorded; TMB and FLAIR lesion counts were assessed. Four groups were created based on elapsed time between the trauma and MRI: 0-24, 24-48, 48-72, and >72 h. Kruskal-Wallis, ANOVA, Chi-square, and Fisher's exact tests were used to reveal differences among the groups within clinical and imaging parameters; statistical power was calculated retrospectively for each comparison. Results: The Kruskal-Wallis ANOVA with Conover post hoc analysis showed significant (p = 0.01; 1-ß > 0.9) median TMB number differences in the subacute period: 0-24 h = 4.00 (n = 11); 24-48 h = 1 (n = 14); 48-72 h = 1 (n = 11); and 72 h ≤ 7.5 (n = 10). Neither clinical parameters nor FLAIR lesions depicted significant differences among the groups. Conclusion: Our results demonstrate that TMBs on SWI MRI may temporarily become less detectable at 24-72 h following TBI.

3.
Front Mol Neurosci ; 11: 56, 2018.
Article in English | MEDLINE | ID: mdl-29535607

ABSTRACT

Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the "gliocentric theory", glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation-mediated by microglial activation-triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the "gliocentric" theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.

4.
Epilepsy Behav ; 61: 14-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27232377

ABSTRACT

In mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), structural abnormalities are present not only in the hippocampus but also in the white matter with ipsilateral predominance. Although the timing of epilepsy onset is commonly associated with clinical and semiological dissimilarities, limited data exist regarding white matter diffusion changes with respect to age at epilepsy onset. The aim of this study was to investigate diffusion changes in the white matter of patients with unilateral MTLE-HS with respect to clinical parameters and to compare them with an age- and sex-matched healthy control group. Apparent diffusion coefficients (ADCs) were derived using monoexponential approaches from 22 (11 early and 11 late age at onset) patients with unilateral MTLE-HS and 22 age- and sex-matched control subjects after acquiring diffusion-weighted images on a 3T MRI system. Data were analyzed using two-tailed t-tests and multiple linear regression models. In the group with early onset MTLE-HS, ADC was significantly elevated in the ipsilateral hemispheric (p=0.04) and temporal lobe white matter (p=0.01) compared with that in controls. These differences were not detectable in late onset MTLE-HS patients. Apparent diffusion coefficient of the group with early onset MTLE-HS was negatively related to age at epilepsy onset in the ipsilateral hemispheric white matter (p=0.03) and the uncinate fasciculus (p=0.03), while in patients with late onset MTLE-HS, ADC was no longer dependent on age at epilepsy onset itself but rather on the seizure frequency in the ipsilateral uncinate fasciculus (p=0.03). Such diffusivity pattern has been associated with chronic white matter degeneration, reflecting myelin loss and higher extracellular volume which are more pronounced in the frontotemporal regions and also depend on clinical features. In the group with early onset MTLE-HS, the timing of epilepsy seems to be the major cause of white matter abnormalities while in late onset disease, it has a secondary role in provoking diffusion changes.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/epidemiology , Seizures/epidemiology , White Matter/diagnostic imaging , Adult , Age of Onset , Aged , Diffusion Magnetic Resonance Imaging , Electroencephalography , Female , Hippocampus/pathology , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Myelin Sheath/pathology , Sclerosis/pathology , Seizures/diagnostic imaging , Seizures/etiology , Young Adult
6.
Exp Gerontol ; 58: 69-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25064038

ABSTRACT

The growth promoting effects of eccentric (ECC) contractions are well documented but it is unknown if the rate of stretch per se plays a role in such muscular responses in healthy aging human skeletal muscle. We tested the hypothesis that exercise training of the quadriceps muscle with low rate ECC and high rate ECC contractions in the form of stretch-shortening cycles (SSCs) but at equal total mechanical work would produce rate-specific adaptations in healthy old males age 60-70. Both training programs produced similar improvements in maximal voluntary isometric (6%) and ECC torque (23%) and stretch-shortening cycle function (reduced contraction duration [24%] and enhanced elastic energy storage [12%]) (p<0.05). The rate of torque development increased 30% only after SSC exercise (p<0.05). Resting testosterone and cortisol levels were unchanged but after each program the acute exercise-induced cortisol levels were 12-15% lower (p<0.05). Both programs increased quadriceps size 2.5% (p<0.05). It is concluded that both ECC and SSC exercise training produces favorable adaptations in healthy old males' quadriceps muscle. Although the rate of muscle tension during the SSC vs. ECC contractions was about 4-fold greater, the total mechanical work seems to regulate the hypetrophic, hormonal, and most of the mechanical adaptations. However, SSC exercise was uniquely effective in improving a key deficiency of aging muscle, i.e., its ability to produce force rapidly.


Subject(s)
Aging/physiology , Isometric Contraction , Muscle Strength , Quadriceps Muscle/physiology , Resistance Training/methods , Adaptation, Physiological , Age Factors , Aged , Aging/blood , Biomarkers/blood , Biomechanical Phenomena , Humans , Hungary , Hydrocortisone/blood , Hypertrophy , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Quadriceps Muscle/metabolism , Sex Factors , Testosterone/blood , Time Factors , Torque , Treatment Outcome
7.
Magn Reson Imaging ; 31(2): 286-95, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22902473

ABSTRACT

PURPOSE: Our aim was to characterize bi-exponential diffusion signal changes in normal appearing white matter of multiple sclerosis (MS) patients. METHODS: Diffusion parameters were measured using mono-exponential (0-1000 s/mm(2)) and bi-exponential (0-5000 s/mm(2)) approaches from 14 relapsing-remitting subtype of MS patients and 14 age- and sex-matched controls after acquiring diffusion-weighted images on a 3T MRI system. The results were analyzed using parametric or nonparametric tests and multiple linear regression models. RESULTS: Mono-exponential apparent diffusion coefficient (ADC) slightly increased in controls (P=.09), but decreased significantly in MS as a function of age, nonetheless an elevated ADC was observed with increasing lesion number in patients. Bi-exponential analyses showed that the increased ADC is the result of decreased relative volume fraction of slow diffusing component (f(s)). However, the fast and slow diffusion components (ADC(f), ADC(s)) did not change as a function of either age in controls or lesion number and age in MS patients. CONCLUSIONS: These data demonstrated that the myelin content of the white matter affects diffusion in relapsing-remitting subtype of multiple sclerosis that is possibly a consequence of the shift between different water fractions.


Subject(s)
Brain/pathology , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Nerve Fibers, Myelinated/pathology , Adult , Case-Control Studies , Cerebrum/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Models, Statistical , Myelin Sheath/pathology , Regression Analysis , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...