Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 93: 117458, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37634418

ABSTRACT

Aggressive pancreatic cancer is typically treated using chemotherapeutics to reduce the tumor pre-operatively and prevent metastasis post-operatively, as well as surgical approaches. In the present study, we synthesized a hydroxyl group-introduced chalcone derivative (1, IC50 = 32.1 µM) and investigated its potential as an anticancer drug candidate by evaluating its apoptosis-promoting effects on BXPC-3 cancer cells. The viability of BXPC-3 cells treated with 1 was measured using the water-soluble tetrazolium 1 reagent. BXPC-3 cells induced by 1 were stained with diverse probes or antibodies, such as ethidium homodimer-1, Hoechst, anti-Ki67, and MitoTracker. Protein expression was measured using an immunoblotting assay, and mRNA expression was determined using real-time polymerase chain reaction. Apoptotic molecular features, such as lipid accumulation and protein degradation, were monitored directly using stimulated Raman scattering microspectroscopy. Through incubation time- and concentration-dependent studies of 1, we found that it significantly reduced the proliferation and increased the number of apoptotic BXPC-3 cells. Compound 1 induced mitochondrial dysfunction, phosphorylation of p38, and caspase 3 cleavage. These results indicate that 1 is a potential therapeutic agent for pancreatic cancer, providing valuable insights into the development of new anticancer drug candidates.


Subject(s)
Chalcone , Chalcones , Pancreatic Neoplasms , Humans , Chalcones/pharmacology , Pancreatic Neoplasms/drug therapy , Apoptosis , Pancreas , Chalcone/pharmacology , Pancreatic Neoplasms
2.
Nat Commun ; 13(1): 5081, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038547

ABSTRACT

The quantitative detection of circularly polarized light (CPL) is necessary in next-generation optical communication carrying high-density information and in phase-controlled displays exhibiting volumetric imaging. In the current technology, multiple pixels of different wavelengths and polarizers are required, inevitably resulting in high loss and low detection efficiency. Here, we demonstrate a highly efficient CPL-detecting transistor composed of chiral plasmonic nanoparticles with a high Khun's dissymmetry (g-factor) of 0.2 and a high mobility conducting oxide of InGaZnO. The device successfully distinguished the circular polarization state and displayed an unprecedented photoresponsivity of over 1 A/W under visible CPL excitation. This observation is mainly attributed to the hot electron generation in chiral plasmonic nanoparticles and to the effective collection of hot electrons in the oxide semiconducting transistor. Such characteristics further contribute to opto-neuromorphic operation and the artificial nervous system based on the device successfully performs image classification work. We anticipate that our strategy will aid in the rational design and fabrication of a high-performance CPL detector and opto-neuromorphic operation with a chiral plasmonic structure depending on the wavelength and circular polarization state.

3.
Adv Healthc Mater ; 11(14): e2200529, 2022 07.
Article in English | MEDLINE | ID: mdl-35536751

ABSTRACT

Combating biofilm infections remains a challenge due to the shield and acidic conditions. Herein, an acid-responsive nanoporphyrin (PN3-NP) based on the self-assembly of a water-soluble porphyrin derivative (PN3) is constructed. Additional kinetic control sites formed by the conjugation of the spermine molecules to a porphyrin macrocycle make PN3 self-assemble into stable nanoparticles (PN3-NP) in the physiological environment. Noteworthily, near-infrared (NIR) fluorescence monitoring and synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) effects of PN3-NP can be triggered by the acidity in biofilms, accompanied by intelligent transformation into dot-like nanospheres. Thus, damage to normal tissue is effectively avoided and accurate diagnosis and treatment of biofilms is achieved successfully. The good results of fluorescence imaging-guided photo-ablation of antibiotic-resistant strains methicillin-resistant Staphylococcus aureus (MRSA) biofilms verify that PN3-NP is a promising alternative to antibiotics. Meanwhile, this strategy also opens new horizons to engineer smart nano-photosensitizer for accurate diagnosis and treatment of biofilms.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Porphyrins , Anti-Bacterial Agents/pharmacology , Biofilms , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Phototherapy/methods , Porphyrins/pharmacology
4.
J Phys Chem Lett ; 12(41): 10218-10224, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34647735

ABSTRACT

Vibrational sum-frequency generation (VSFG) spectroscopy, a surface-specific technique, was shown to be useful even for characterizing the vibrational optical activity of chiral molecules in isotropic bulk liquids. However, accurately determining the spectroscopic parameters is still challenging because of the spectral congestion of chiroptical VSFG peaks with different amplitudes and phases. Here, we show that a time-variable infrared-visible chiroptical three-wave-mixing technique can be used to determine the spectroscopic parameters of second-order vibrational response signals from chiral chemical liquids. For varying the delay time between infrared and temporally asymmetric visible laser pulses, we measure the chiral VSFG, achiral VSFG, and their interference spectra of bulk R-(+)-limonene liquid and perform a global fitting analysis for those time-variable spectra to determine their spectroscopic parameters accurately. We anticipate that this time-variable VSFG approach will be useful for developing nearly background-free chiroptical characterization techniques with enhanced spectral resolution.

5.
Small ; 17(45): e2103400, 2021 11.
Article in English | MEDLINE | ID: mdl-34569143

ABSTRACT

Strongly bound excitons are a characteristic hallmark of 2D semiconductors, enabling unique light-matter interactions and novel optical applications. Platinum diselenide (PtSe2 ) is an emerging 2D material with outstanding optical and electrical properties and excellent air stability. Bulk PtSe2 is a semimetal, but its atomically thin form shows a semiconducting phase with the appearance of a band-gap, making one expect strongly bound 2D excitons. However, the excitons in PtSe2 have been barely studied, either experimentally or theoretically. Here, the authors directly observe and theoretically confirm excitons and their ultrafast dynamics in mono-, bi-, and tri-layer PtSe2 single crystals. Steady-state optical microscopy reveals exciton absorption resonances and their thickness dependence, confirmed by first-principles calculations. Ultrafast transient absorption microscopy finds that the exciton dominates the transient broadband response, resulting from strong exciton bleaching and renormalized band-gap-induced exciton shifting. The overall transient spectrum redshifts with increasing thickness as the shrinking band-gap redshifts the exciton resonance. This study provides novel insights into exciton photophysics in platinum dichalcogenides.


Subject(s)
Platinum , Semiconductors , Hypochlorous Acid , Microscopy
6.
J Am Chem Soc ; 143(1): 326-334, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33347305

ABSTRACT

The photoluminescence (PL) of metal nanoclusters (NCs), originating from their molecule-like electronic structure, is one of the most intriguing properties of NCs. Although various strategies such as tailoring the size, structure, and chemical environment of NCs have shown to improve the PL, their quantum yields (QYs) are still lagging far behind those of conventional luminescent materials, including quantum dots and organic fluorophores. Herein, we report the synthesis of highly luminescent gold cluster assembly (GCA) from Zn2+-ion-mediated assembly of Au4(SRCOO-)4 clusters using mercaptocarboxylic acid as a protective ligand and reductant as well as a growth suppressor. The synergetic combination of unique aurophilic interactions among Au4 clusters and the rigidified chemical environment induced by metal ion chelation through carboxylate groups is responsible for the ultrabright greenish-blue fluorescence with a QY up to 90%. Furthermore, the unique flexibility of dis/reassembly and the aggregation-dependent strong fluorescence of GCA offer a great potential for applications in biodegradable and trackable drug delivery systems.

7.
Opt Express ; 27(16): 23558-23575, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510631

ABSTRACT

We introduce a new coherent anti-Stokes Raman scattering (CARS) suppression scheme based on measuring a non-resonant CARS loss signal by three-beam (pump-Stokes-depletion) double stimulated Raman scattering (SRS) processes, which can be potentially of use for super-resolution Raman microscopy. In the converging configuration with employing both pump-depletion and Stokes-depletion SRS processes, we obtained approximately 94% suppression of non-resonant CARS signal, which is about 1.5 times more efficient than that with the parallel configuration with pump-Stokes and pump-depletion SRS processes. Such an enhanced suppression efficiency in the converging configuration results from a simultaneous loss of photons both in the pump and Stokes beams by double SRS processes, leading to an efficient suppression of the pump-Stokes-pump CARS signal. Based on the present method, we further propose two potential applications: (1) non-resonant background-free CARS imaging and (2) label-free super-resolution Raman imaging, and carry out simple numerical simulations to show their feasibility.

8.
Nano Lett ; 18(2): 1044-1048, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29309166

ABSTRACT

Understanding carrier relaxation in lead halide perovskites at the nanoscale is critical for advancing their device physics. Here, we directly image carrier cooling in polycrystalline CH3NH3PbI3 films with nanometer spatial resolution. We observe that upon photon absorption, highly energetic carriers rapidly thermalize with the lattice at different rates across the film. The initial carrier temperatures vary by many multiples of the lattice temperature across hundreds of nanometers, a factor that cannot be accounted for by excess photon energy above the bandgap alone or in variations of the initial carrier density. Electron microscopy suggests that morphology plays a critical role in determining the initial carrier temperature and that carriers in small crystal domains decay slower than those in large crystal domains. Our results demonstrate that local disorder dominates the observed carrier behavior, highlighting the importance of making local rather than averaged measurements in these materials.

9.
Nano Lett ; 17(11): 6564-6568, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28968114

ABSTRACT

Coupling of an atom-like emitter to surface plasmons provides a path toward significant optical nonlinearity, which is essential in quantum information processing and quantum networks. A large coupling strength requires nanometer-scale positioning accuracy of the emitter near the surface of the plasmonic structure, which is challenging. We demonstrate the coupling of single localized defects in a tungsten diselenide (WSe2) monolayer self-aligned to the surface plasmon mode of a silver nanowire. The silver nanowire induces a strain gradient on the monolayer at the overlapping area, leading to the formation of localized defect emission sites that are intrinsically close to the surface plasmon. We measured an average coupling efficiency with a lower bound of 26% ± 11% from the emitter into the plasmonic mode of the silver nanowire. This technique offers a way to achieve efficient coupling between plasmonic structures and localized defects of two-dimensional semiconductors.

10.
Nat Commun ; 6: 6558, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25790228

ABSTRACT

An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young's interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications.

11.
ACS Nano ; 8(10): 10734-42, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25244589

ABSTRACT

We report on the dynamical response of single layer transition metal dichalcogenide MoS2 to intense above-bandgap photoexcitation using the nonlinear-optical second order susceptibility as a direct probe of the electronic and structural dynamics. Excitation conditions corresponding to the order of one electron-hole pair per unit cell generate unexpected increases in the second harmonic from monolayer films, occurring on few picosecond time-scales. These large amplitude changes recover on tens of picosecond time-scales and are reversible at megahertz repetition rates with no photoinduced change in lattice symmetry observed despite the extreme excitation conditions.

12.
Nano Lett ; 14(8): 4322-7, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25051318

ABSTRACT

One-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices, exhibiting large nonlinear optical and piezoelectric responses. Here we present femtosecond measurements of light-induced polarization dynamics within an optically trapped ferroelectric nanowire, using the second-order nonlinear susceptibility as a real-time structural probe. Large amplitude, reversible modulations of the nonlinear susceptibility are observed within single nanowires at megahertz repetition rates, developing on few-picosecond time-scales, associated with anomalous coupling of light into the nanowire.

13.
Nano Lett ; 13(8): 3936-41, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23883172

ABSTRACT

Synthetic nanostructures, such as nanoparticles and nanowires, can serve as modular building blocks for integrated nanoscale systems. We demonstrate a microfluidic approach for positioning, orienting, and assembling such nanostructures into nanoassemblies. We use flow control combined with a cross-linking photoresist to position and immobilize nanostructures in desired positions and orientations. Immobilized nanostructures can serve as pivots, barriers, and guides for precise placement of subsequent nanostructures.

14.
Nat Commun ; 4: 1447, 2013.
Article in English | MEDLINE | ID: mdl-23385591

ABSTRACT

Plasmonic nanostructures confine light on the nanoscale, enabling ultra-compact optical devices that exhibit strong light-matter interactions. Quantum dots are ideal for probing plasmonic devices because of their nanoscopic size and desirable emission properties. However, probing with single quantum dots has remained challenging because their small size also makes them difficult to manipulate. Here we demonstrate the use of quantum dots as on-demand probes for imaging plasmonic nanostructures, as well as for realizing spontaneous emission control at the single emitter level with nanoscale spatial accuracy. A single quantum dot is positioned with microfluidic flow control to probe the local density of optical states of a silver nanowire, achieving 12 nm imaging accuracy. The high spatial accuracy of this scanning technique enables a new method for spontaneous emission control where interference of counter-propagating surface plasmon polaritons results in spatial oscillations of the quantum dot lifetime as it is positioned along the wire axis.

15.
J Phys Chem A ; 113(16): 4416-22, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19275150

ABSTRACT

We investigate the connections between two field-enhanced phenomena of gold nanoparticles: multiphoton-absorption-induced luminescence (MAIL) and metal-enhanced multiphoton absorption polymerization (MEMAP). We observe a strong correlation between the nanoparticles and aggregates that have high efficiency for each process. The results of our studies indicate that for this system, MEMAP is driven not by field-enhanced two-photon absorption of the photoinitiator but rather by single-photon excitation of the photoinitiator by the MAIL emission.

16.
Anal Chim Acta ; 556(1): 208-15, 2006 Jan 18.
Article in English | MEDLINE | ID: mdl-17723351

ABSTRACT

The ability to monitor etching solutions using a spectroscopy directly through existing Teflon lines in electronic industries is highly beneficial and offers many advantages. A monitoring method was developed using near-infrared (NIR) measurements with Teflon tubing as a sample container for the quantification of components in the indium-tin-oxide (ITO) etching solution composed of hydrochloric acid (HCl), acetic acid (CH3COOH) and water. Measurements were reproducible and it was possible to use the same calibration model for different Teflon tubings. Even though partial least squares (PLS) calibration performance was slightly degraded for Teflon cells when compared to quartz cells of the similar pathlength, the calibration data correlated well with reference data. The robustness of Teflon-based NIR measurement was evaluated by predicting the spectra of 10 independent samples that were collected using five different Teflon tubes. Although, two Teflon tubes were visually less transparent than the other three, there was no significant variation in the standard error of predictions (SEPs) among the five Teflon tubes. Calibration accuracy was successfully maintained and highly repeatable prediction results were achieved. This study verifies that a Teflon-based NIR measurement is reliable for the monitoring of etching solutions and it can be successfully integrated into on-line process monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...