Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 42(7): 1469-1477, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38057207

ABSTRACT

The U.S. Centers for Disease Control and Prevention (CDC) developed and implemented the CDC COVID-19 Vaccine Pregnancy Registry (C19VPR) to monitor vaccine safety. Potential participants who received a COVID-19 vaccine in pregnancy or up to 30 days prior to their pregnancy-associated last menstrual period were eligible to participate in the registry, which monitored health outcomes of participants and their infants through phone interviews and review of available medical records. Data for select outcomes, including birth defects, were reviewed by clinicians. In certain cases, medical records were used to confirm and add detail to participant-reported health conditions. This paper serves as a description of CDC C19VPR protocol. We describe the development and implementation for each data collection aspect of the registry (i.e., participant phone interviews, clinical review, and medical record abstraction), data management, and strengths and limitations. We also describe the demographics and vaccinations received among eligible and enrolled participants. There were 123,609 potential participants 18-54 years of age identified from January 2021 through mid-June 2021; 23,339 were eligible and enrolled into the registry. Among these, 85.3 % consented to medical record review for themselves and/or their infants. Participants were majority non-Hispanic White (79.1 %), residents of urban areas (93.3 %), and 48.3 % were between 30 and 34 years of age. Most participants completed the primary series of vaccination by the end of pregnancy (89.7 %). Many participants were healthcare personnel (44.8 %), possibly due to the phased roll-out of the vaccination program. The registry continues to provide important information about the safety of COVID-19 vaccination among pregnant people, a population with higher risk of poor outcomes from COVID-19 who were not included in pre-authorization clinical trials. Lessons learned from the registry may guide development and implementation of future vaccine safety monitoring efforts for pregnant people and their infants.


Subject(s)
COVID-19 , Vaccines , Female , Humans , Infant , Pregnancy , Centers for Disease Control and Prevention, U.S. , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Data Collection , Registries , United States , Vaccination , Adolescent , Young Adult , Adult , Middle Aged
2.
Birth Defects Res ; 114(8): 314-318, 2022 05.
Article in English | MEDLINE | ID: mdl-35332688

ABSTRACT

BACKGROUND: The US Zika Pregnancy and Infant Registry (USZPIR) monitors infants born to mothers with confirmed or possible Zika virus infection during pregnancy. The surveillance case definition for Zika-associated birth defects includes microcephaly based on head circumference (HC). METHODS: We assessed birth and follow-up data from infants with birth HC measurements <3rd percentile and birthweight ≥10th percentile to determine possible misclassification of microcephaly. We developed a schema informed by literature review and expert opinion to identify possible HC measurement inaccuracy using HC growth velocity and longitudinal HC measurements between 2 and 12 months of age. Two or more HC measurements were required for assessment. Inaccuracy in birth HC measurement was suspected if growth velocity was >3 cm/month in the first 3 months or HC was consistently >25th percentile during follow-up. RESULTS: Of 6,799 liveborn infants in USZPIR, 351 (5.2%) had Zika-associated birth defects, of which 111 had birth HC measurements <3rd percentile and birthweight ≥10th percentile. Of 84/111 infants with sufficient follow-up, 38/84 (45%) were classified as having possible inaccuracy of birth HC measurement, 19/84 (23%) had HC ≥3rd percentile on follow-up without meeting criteria for possible inaccuracy, and 27/84 (32%) had continued HC <3rd percentile. After excluding possible inaccuracies, the proportion of infants with Zika-associated birth defects including microcephaly decreased from 5.2% to 4.6%. CONCLUSIONS: About one-third of infants in USZPIR with Zika-associated birth defects had only microcephaly, but indications of possible measurement inaccuracy were common. Implementation of this schema in longitudinal studies can reduce misclassification of microcephaly.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Birth Weight , Female , Humans , Infant , Male , Microcephaly/diagnosis , Microcephaly/epidemiology , Microcephaly/etiology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Registries , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
3.
MMWR Morb Mortal Wkly Rep ; 69(44): 1641-1647, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33151921

ABSTRACT

Studies suggest that pregnant women might be at increased risk for severe illness associated with coronavirus disease 2019 (COVID-19) (1,2). This report provides updated information about symptomatic women of reproductive age (15-44 years) with laboratory-confirmed infection with SARS-CoV-2, the virus that causes COVID-19. During January 22-October 3, CDC received reports through national COVID-19 case surveillance or through the National Notifiable Diseases Surveillance System (NNDSS) of 1,300,938 women aged 15-44 years with laboratory results indicative of acute infection with SARS-CoV-2. Data on pregnancy status were available for 461,825 (35.5%) women with laboratory-confirmed infection, 409,462 (88.7%) of whom were symptomatic. Among symptomatic women, 23,434 (5.7%) were reported to be pregnant. After adjusting for age, race/ethnicity, and underlying medical conditions, pregnant women were significantly more likely than were nonpregnant women to be admitted to an intensive care unit (ICU) (10.5 versus 3.9 per 1,000 cases; adjusted risk ratio [aRR] = 3.0; 95% confidence interval [CI] = 2.6-3.4), receive invasive ventilation (2.9 versus 1.1 per 1,000 cases; aRR = 2.9; 95% CI = 2.2-3.8), receive extracorporeal membrane oxygenation (ECMO) (0.7 versus 0.3 per 1,000 cases; aRR = 2.4; 95% CI = 1.5-4.0), and die (1.5 versus 1.2 per 1,000 cases; aRR = 1.7; 95% CI = 1.2-2.4). Stratifying these analyses by age and race/ethnicity highlighted disparities in risk by subgroup. Although the absolute risks for severe outcomes for women were low, pregnant women were at increased risk for severe COVID-19-associated illness. To reduce the risk for severe illness and death from COVID-19, pregnant women should be counseled about the importance of seeking prompt medical care if they have symptoms and measures to prevent SARS-CoV-2 infection should be strongly emphasized for pregnant women and their families during all medical encounters, including prenatal care visits. Understanding COVID-19-associated risks among pregnant women is important for prevention counseling and clinical care and treatment.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pregnancy Complications, Infectious/diagnosis , Symptom Assessment , Adolescent , Adult , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Female , Humans , Laboratories , Pandemics , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Risk Assessment , SARS-CoV-2 , Severity of Illness Index , United States/epidemiology , Young Adult
4.
MMWR Morb Mortal Wkly Rep ; 69(25): 769-775, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32584795

ABSTRACT

As of June 16, 2020, the coronavirus disease 2019 (COVID-19) pandemic has resulted in 2,104,346 cases and 116,140 deaths in the United States.* During pregnancy, women experience immunologic and physiologic changes that could increase their risk for more severe illness from respiratory infections (1,2). To date, data to assess the prevalence and severity of COVID-19 among pregnant U.S. women and determine whether signs and symptoms differ among pregnant and nonpregnant women are limited. During January 22-June 7, as part of COVID-19 surveillance, CDC received reports of 326,335 women of reproductive age (15-44 years) who had positive test results for SARS-CoV-2, the virus that causes COVID-19. Data on pregnancy status were available for 91,412 (28.0%) women with laboratory-confirmed infections; among these, 8,207 (9.0%) were pregnant. Symptomatic pregnant and nonpregnant women with COVID-19 reported similar frequencies of cough (>50%) and shortness of breath (30%), but pregnant women less frequently reported headache, muscle aches, fever, chills, and diarrhea. Chronic lung disease, diabetes mellitus, and cardiovascular disease were more commonly reported among pregnant women than among nonpregnant women. Among women with COVID-19, approximately one third (31.5%) of pregnant women were reported to have been hospitalized compared with 5.8% of nonpregnant women. After adjusting for age, presence of underlying medical conditions, and race/ethnicity, pregnant women were significantly more likely to be admitted to the intensive care unit (ICU) (aRR = 1.5, 95% confidence interval [CI] = 1.2-1.8) and receive mechanical ventilation (aRR = 1.7, 95% CI = 1.2-2.4). Sixteen (0.2%) COVID-19-related deaths were reported among pregnant women aged 15-44 years, and 208 (0.2%) such deaths were reported among nonpregnant women (aRR = 0.9, 95% CI = 0.5-1.5). These findings suggest that among women of reproductive age with COVID-19, pregnant women are more likely to be hospitalized and at increased risk for ICU admission and receipt of mechanical ventilation compared with nonpregnant women, but their risk for death is similar. To reduce occurrence of severe illness from COVID-19, pregnant women should be counseled about the potential risk for severe illness from COVID-19, and measures to prevent infection with SARS-CoV-2 should be emphasized for pregnant women and their families.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Pregnancy Complications, Infectious/virology , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Laboratories , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Prevalence , Risk Assessment , SARS-CoV-2 , Severity of Illness Index , United States/epidemiology , Young Adult
5.
MMWR Morb Mortal Wkly Rep ; 69(3): 67-71, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31971935

ABSTRACT

Zika virus infection during pregnancy can cause congenital brain and eye abnormalities and is associated with neurodevelopmental abnormalities (1-3). In areas of the United States that experienced local Zika virus transmission, the prevalence of birth defects potentially related to Zika virus infection during pregnancy increased in the second half of 2016 compared with the first half (4). To update the previous report, CDC analyzed population-based surveillance data from 22 states and territories to estimate the prevalence of birth defects potentially related to Zika virus infection, regardless of laboratory evidence of or exposure to Zika virus, among pregnancies completed during January 1, 2016-June 30, 2017. Jurisdictions were categorized as those 1) with widespread local transmission of Zika virus; 2) with limited local transmission of Zika virus; and 3) without local transmission of Zika virus. Among 2,004,630 live births, 3,359 infants and fetuses with birth defects potentially related to Zika virus infection during pregnancy were identified (1.7 per 1,000 live births, 95% confidence interval [CI] = 1.6-1.7). In areas with widespread local Zika virus transmission, the prevalence of birth defects potentially related to Zika virus infection during pregnancy was significantly higher during the quarters comprising July 2016-March 2017 (July-September 2016 = 3.0; October-December 2016 = 4.0; and January-March 2017 = 5.6 per 1,000 live births) compared with the reference period (January-March 2016) (1.3 per 1,000). These findings suggest a fourfold increase (prevalence ratio [PR] = 4.1, 95% CI = 2.1-8.4) in birth defects potentially related to Zika virus in widespread local transmission areas during January-March 2017 compared with that during January-March 2016, with the highest prevalence (7.0 per 1,000 live births) in February 2017. Population-based birth defects surveillance is critical for identifying infants and fetuses with birth defects potentially related to Zika virus regardless of whether Zika virus testing was conducted, especially given the high prevalence of asymptomatic disease. These data can be used to inform follow-up care and services as well as strengthen surveillance.


Subject(s)
Congenital Abnormalities/epidemiology , Congenital Abnormalities/virology , Population Surveillance , Pregnancy Complications, Infectious/virology , Zika Virus Infection/complications , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Prevalence , Puerto Rico/epidemiology , United States/epidemiology , United States Virgin Islands/epidemiology
6.
MMWR Morb Mortal Wkly Rep ; 67(31): 858-867, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30091967

ABSTRACT

INTRODUCTION: Zika virus infection during pregnancy causes serious birth defects and might be associated with neurodevelopmental abnormalities in children. Early identification of and intervention for neurodevelopmental problems can improve cognitive, social, and behavioral functioning. METHODS: Pregnancies with laboratory evidence of confirmed or possible Zika virus infection and infants resulting from these pregnancies are included in the U.S. Zika Pregnancy and Infant Registry (USZPIR) and followed through active surveillance methods. This report includes data on children aged ≥1 year born in U.S. territories and freely associated states. Receipt of reported follow-up care was assessed, and data were reviewed to identify Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection. RESULTS: Among 1,450 children of mothers with laboratory evidence of confirmed or possible Zika virus infection during pregnancy and with reported follow-up care, 76% had developmental screening or evaluation, 60% had postnatal neuroimaging, 48% had automated auditory brainstem response-based hearing screen or evaluation, and 36% had an ophthalmologic evaluation. Among evaluated children, 6% had at least one Zika-associated birth defect identified, 9% had at least one neurodevelopmental abnormality possibly associated with congenital Zika virus infection identified, and 1% had both. CONCLUSION: One in seven evaluated children had a Zika-associated birth defect, a neurodevelopmental abnormality possibly associated with congenital Zika virus infection, or both reported to the USZPIR. Given that most children did not have evidence of all recommended evaluations, additional anomalies might not have been identified. Careful monitoring and evaluation of children born to mothers with evidence of Zika virus infection during pregnancy is essential for ensuring early detection of possible disabilities and early referral to intervention services.


Subject(s)
Congenital Abnormalities/virology , Neurodevelopmental Disorders/virology , Population Surveillance , Pregnancy Complications, Infectious/virology , Zika Virus Infection/congenital , American Samoa/epidemiology , Child, Preschool , Congenital Abnormalities/epidemiology , District of Columbia/epidemiology , Female , Humans , Infant , Infant, Newborn , Microcephaly/epidemiology , Microcephaly/virology , Micronesia/epidemiology , Neurodevelopmental Disorders/epidemiology , Pregnancy , Puerto Rico/epidemiology , Registries , United States/epidemiology , United States Virgin Islands/epidemiology , Zika Virus/isolation & purification
7.
MMWR Morb Mortal Wkly Rep ; 67(3): 91-96, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29370151

ABSTRACT

Zika virus infection during pregnancy can cause serious birth defects, including microcephaly and brain abnormalities (1). Population-based birth defects surveillance systems are critical to monitor all infants and fetuses with birth defects potentially related to Zika virus infection, regardless of known exposure or laboratory evidence of Zika virus infection during pregnancy. CDC analyzed data from 15 U.S. jurisdictions conducting population-based surveillance for birth defects potentially related to Zika virus infection.* Jurisdictions were stratified into the following three groups: those with 1) documented local transmission of Zika virus during 2016; 2) one or more cases of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents; and 3) less than one case of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents. A total of 2,962 infants and fetuses (3.0 per 1,000 live births; 95% confidence interval [CI] = 2.9-3.2) (2) met the case definition.† In areas with local transmission there was a non-statistically significant increase in total birth defects potentially related to Zika virus infection from 2.8 cases per 1,000 live births in the first half of 2016 to 3.0 cases in the second half (p = 0.10). However, when neural tube defects and other early brain malformations (NTDs)§ were excluded, the prevalence of birth defects strongly linked to congenital Zika virus infection increased significantly, from 2.0 cases per 1,000 live births in the first half of 2016 to 2.4 cases in the second half, an increase of 29 more cases than expected (p = 0.009). These findings underscore the importance of surveillance for birth defects potentially related to Zika virus infection and the need for continued monitoring in areas at risk for Zika.


Subject(s)
Congenital Abnormalities/epidemiology , Congenital Abnormalities/virology , Population Surveillance , Zika Virus Infection/complications , Female , Humans , Infant , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/virology , Prevalence , Puerto Rico/epidemiology , United States/epidemiology
8.
Virology ; 512: 180-186, 2017 12.
Article in English | MEDLINE | ID: mdl-28972927

ABSTRACT

Studying HIV-1 replication in the presence of functionally related proteins from different species has helped define host determinants of HIV-1 infection. Humans and owl monkeys, but not macaques, encode a CD4 receptor that permits entry of transmissible HIV-1 variants due to a single residue difference. However, little is known about whether divergent CCR5 receptor proteins act as determinants of host-range. Here we show that both owl monkey (Aotus vociferans) CD4 and CCR5 receptors are functional for the entry of transmitted HIV-1 when paired with human versions of the other receptor. By contrast, the owl monkey CD4/CCR5 pair is generally a suboptimal receptor combination, although there is virus-specific variation in infection with owl monkey receptors. Introduction of the human residues 15Y and 16T within a sulfation motif into owl monkey CCR5 resulted in a gain of function. These findings suggest there is cross-talk between CD4 and CCR5 involving the sulfation motif.


Subject(s)
CD4 Antigens/physiology , HIV-1/physiology , Receptors, CCR5/metabolism , Virus Internalization , Amino Acid Sequence , Animals , Aotidae , HEK293 Cells , Humans , Mutation , Receptors, CCR5/genetics , Virus Replication
9.
MMWR Morb Mortal Wkly Rep ; 66(23): 615-621, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28617773

ABSTRACT

Pregnant women living in or traveling to areas with local mosquito-borne Zika virus transmission are at risk for Zika virus infection, which can lead to severe fetal and infant brain abnormalities and microcephaly (1). In February 2016, CDC recommended 1) routine testing for Zika virus infection of asymptomatic pregnant women living in areas with ongoing local Zika virus transmission at the first prenatal care visit, 2) retesting during the second trimester for women who initially test negative, and 3) testing of pregnant women with signs or symptoms consistent with Zika virus disease (e.g., fever, rash, arthralgia, or conjunctivitis) at any time during pregnancy (2). To collect information about pregnant women with laboratory evidence of recent possible Zika virus infection* and outcomes in their fetuses and infants, CDC established pregnancy and infant registries (3). During January 1, 2016-April 25, 2017, U.S. territories† with local transmission of Zika virus reported 2,549 completed pregnancies§ (live births and pregnancy losses at any gestational age) with laboratory evidence of recent possible Zika virus infection; 5% of fetuses or infants resulting from these pregnancies had birth defects potentially associated with Zika virus infection¶ (4,5). Among completed pregnancies with positive nucleic acid tests confirming Zika infection identified in the first, second, and third trimesters, the percentage of fetuses or infants with possible Zika-associated birth defects was 8%, 5%, and 4%, respectively. Among liveborn infants, 59% had Zika laboratory testing results reported to the pregnancy and infant registries. Identification and follow-up of infants born to women with laboratory evidence of recent possible Zika virus infection during pregnancy permits timely and appropriate clinical intervention services (6).


Subject(s)
Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome , Zika Virus Infection/epidemiology , Female , Humans , Infant, Newborn , Pregnancy , United States/epidemiology
10.
Methods ; 56(1): 95-102, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22126736

ABSTRACT

The nematode Caenorhabditis elegans uses striated muscle in its body wall for locomotion. The myofilament lattice is organized such that all the thin filament attachment structures (dense bodies, analogous to Z-disks) and thick filament organizing centers (M-lines) are attached to the muscle cell membrane. Thus, the force of muscle contraction is transmitted through these structures and allows locomotion of the worm. Dense bodies and M-lines are compositionally similar to focal adhesions and costameres, and are based on integrin and associated proteins. Null mutants for many of the newly discovered dense body and M-line proteins do not have obvious locomotion defects when observed casually, or when assayed by counting the number of times a worm moves back and forth in liquid. We hypothesized that many of these proteins, located as they are in muscle focal adhesions, function in force transmission, but we had not used an appropriate or sufficiently sensitive assay to reveal this function. Recently, we have developed a new quantitative assay of C. elegans locomotion that measures the maximum bending amplitude of an adult worm as it moves backwards. The assay had been used to reveal locomotion defects for null mutants of genes encoding ATN-1 (α-actinin) and PKN-1 (protein kinase N). Here, we describe the details of this method, and apply it to 21 loss of function mutants in 17 additional genes, most of which encode components of muscle attachment structures. As compared to wild type, mutants in 11 genes were found to have less ability to bend, and mutants in one gene were found to have greater ability to bend. Loss of function mutants for eight proteins had been reported to have normal locomotion (ZYX-1 (zyxin), ALP-1 (Enigma), DIM-1, SCPL-1), or locomotion that was not previously investigated (FRG-1 (FRG1), KIN-32 (focal adhesion kinase), LIM-8), or had only slightly decreased locomotion (PFN-3 (profilin)).


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Focal Adhesions/physiology , Monitoring, Physiologic/methods , Mutation , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Focal Adhesions/genetics , Locomotion/genetics , Phenotype
11.
J Mol Biol ; 407(2): 222-31, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21277858

ABSTRACT

To examine the in vivo functions of protein kinase N (PKN), one of the effectors of Rho small guanosine triphosphatases (GTPases), we used the nematode Caenorhabditis elegans as a genetic model system. We identified a C. elegans homologue (pkn-1) of mammalian PKN and confirmed direct binding to C. elegans Rho small GTPases. Using a green fluorescent protein reporter, we showed that pkn-1 is mainly expressed in various muscles and is localized at dense bodies and M lines. Overexpression of the PKN-1 kinase domain and loss-of-function mutations by genomic deletion of pkn-1 resulted in a loopy Unc phenotype, which has been reported in many mutants of neuronal genes. The results of mosaic analysis and body wall muscle-specific expression of the PKN-1 kinase domain suggests that this loopy phenotype is due to the expression of PKN-1 in body wall muscle. The genomic deletion of pkn-1 also showed a defect in force transmission. These results suggest that PKN-1 functions as a regulator of muscle contraction-relaxation and as a component of the force transmission mechanism.


Subject(s)
Caenorhabditis elegans/metabolism , Muscle Contraction/genetics , Protein Kinase C/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mammals/genetics , Mammals/metabolism , Models, Genetic , Muscles/metabolism , Mutation , Neurons/metabolism , Phenotype , Protein Binding/genetics , Protein Kinase C/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...