Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2702: 347-372, 2023.
Article in English | MEDLINE | ID: mdl-37679629

ABSTRACT

Antibody libraries came into existence 30 years ago when the accumulating sequence data of immunoglobulin genes and the advent of PCR technology made it possible to clone antibody gene repertoires. Phage display (most common) and additional display and screening technologies were applied to pan out desired binding specificities from antibody libraries. As other antibody discovery tools, phage display is not an off-the-shelf technology and not offered as a kit but rather requires experience and expertise for making it indeed very useful.Next-generation sequencing (NGS) coupled with bioinformatics is a powerful tool for analyzing large amount of DNA sequence output of the panning. Here, we demonstrate how NGS analysis of phage biopanning (phage-Seq) of complex antibody libraries can facilitate the antibody discovery process and provide insights regarding the biopanning process (see Fig. 1).


Subject(s)
Bacteriophages , Single-Chain Antibodies , Humans , Single-Chain Antibodies/genetics , Genes, Immunoglobulin , High-Throughput Nucleotide Sequencing , Bioprospecting
2.
Nat Cancer ; 4(3): 401-418, 2023 03.
Article in English | MEDLINE | ID: mdl-36797502

ABSTRACT

Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.


Subject(s)
Astrocytes , Brain Neoplasms , Mice , Animals , Lipocalin-2/genetics , Lipocalin-2/metabolism , Astrocytes/metabolism , Neuroinflammatory Diseases , Brain Neoplasms/genetics , Immunity, Innate
3.
Allergy ; 78(2): 464-476, 2023 02.
Article in English | MEDLINE | ID: mdl-36070083

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease, characterized by eosinophil-rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL-4 and IL-13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL-4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL-4 and IL-13 and whether the type II IL-4 receptor (comprised of the IL-4Rα chain in association with IL-13Rα1) mediates this effect has not been determined. METHODS: Experimental EoE was induced in WT, Il13ra1-/- , and Krt14Cre /Il13ra1fl/fl mice by skin-sensitized using 4-ethoxymethylene-2-phenyl-2-oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. RESULTS: Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL-13 antibody-based neutralization experiments blocked antigen-induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single-cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL-13Rα1 in epithelial cells and that EoE signature genes correlated with IL-13 expression compared with IL-4. CONCLUSIONS: We demonstrate a definitive role for IL-13 signaling via IL-13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL-4R as a future therapeutic target.


Subject(s)
Eosinophilic Esophagitis , Humans , Mice , Animals , Eosinophilic Esophagitis/pathology , Interleukin-13 Receptor alpha1 Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-13/metabolism , Epithelial Cells/metabolism
4.
Front Immunol ; 13: 835774, 2022.
Article in English | MEDLINE | ID: mdl-35350789

ABSTRACT

Diabetes is a metabolic disease that may lead to different life-threatening complications. While insulin constitutes a beneficial treatment, its use may be limited due to increased degradation and an increase in side effects such as weight gain and hypoglycemia. Small molecule inhibitors to insulin-degrading enzyme (IDE) have been previously suggested as a potential treatment for diabetes through their ability to reduce insulin degradation and thus increase insulin activity. Nevertheless, their tendency to bind to the zinc ion in the catalytic site of IDE may affect other important metalloproteases and limit their clinical use. Here, we describe the isolation of an IDE-specific antibody that specifically inhibits insulin degradation by IDE. Using phage display, we generated a human IDE-specific antibody that binds human and mouse IDE with high affinity and specificity and can differentiate between active IDE to a mutated IDE with reduced catalytic activity in the range of 30 nM. We further assessed the ability of that IDE-inhibiting antibody to improve insulin activity in vivo in an STZ-induced diabetes mouse model. Since human antibodies may stimulate the mouse immune response to generate anti-human antibodies, we reformatted our inhibitory antibody to a "reverse chimeric" antibody that maintained the ability to inhibit IDE in vitro, but consisted of mouse constant regions, for reduced immunogenicity. We discovered that one intraperitoneal (IP) administration of the IDE-specific antibody in STZ-induced diabetic mice improved insulin activity in an insulin tolerance test (ITT) assay and reduced blood glucose levels. Our results suggest that antibody-mediated inhibition of IDE may be beneficial on improving insulin activity in a diabetic environment.


Subject(s)
Diabetes Mellitus, Experimental , Insulysin , Animals , Antibodies , Catalytic Domain , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Insulin/metabolism , Insulysin/metabolism , Mice
5.
Transl Vis Sci Technol ; 10(10): 16, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34817617

ABSTRACT

Purpose: Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods: To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results: A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance: Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.


Subject(s)
Retinal Ganglion Cells , Semaphorin-3A , Animals , Axons , Axotomy , Cell Movement , Humans
6.
Sci Immunol ; 5(44)2020 02 14.
Article in English | MEDLINE | ID: mdl-32060143

ABSTRACT

IL-13 and IL-4 are potent mediators of type 2-associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1 -/- mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow-chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.


Subject(s)
Dermatitis, Atopic/immunology , Interleukin-13/immunology , Receptors, Interleukin-4, Type II/immunology , Signal Transduction/immunology , Animals , Dermatitis, Atopic/chemically induced , Dinitrofluorobenzene , Female , Interleukin-13/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxazolone
7.
Methods Mol Biol ; 1904: 431-454, 2019.
Article in English | MEDLINE | ID: mdl-30539485

ABSTRACT

Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not possible with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated. Many of these are based on antibody fragments or on inclusion of non-antibody components. For some therapeutic applications, full-size, native IgG-like bsAbs may be the optimal format.To prepare bsAbs in IgG format, two challenges should be met. One is that each heavy chain will only pair with the heavy chain of the second specificity and that heavy chain homodimerization will be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and that pairing with the light chain of the second specificity will be prevented. The first solution to the first criterion (known as knobs into holes, KIH) was presented in 1996 by Genentech and additional solutions were presented more recently. However, until recently, out of >120 published formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested.Here, we present a protocol for preparing bsAbs in IgG format in transfected mammalian cells. For heavy chain dimerization we use KIH while as a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs we present our "BIClonals" technology; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL.During our studies of bsAbs we found that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies; hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs that suits every antibody sequence, making it necessary to carefully evaluate the optimal solution for each new antibody.


Subject(s)
Antibodies, Bispecific/biosynthesis , Antibodies, Bispecific/immunology , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Cell Line , Gene Expression , Genetic Vectors/genetics , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Protein Engineering , Transfection
8.
Methods Mol Biol ; 1904: 455-480, 2019.
Article in English | MEDLINE | ID: mdl-30539486

ABSTRACT

Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the periplasm bacterium E. coli. The production of soluble scFvs is more effective in quantity, however, under the reducing conditions of the E. coli bacterial cytoplasm it is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMALc-TNN and pMALc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by Tobacco Etch Virus (TEV) protease in order to obtain untagged scFv.The second protocol is for efficient production of Fab antibody fragments as MBP fusion proteins secreted by transiently transfected mammalian cells. While transient transfection is a fast and effective way of obtaining several mgs of antibody for initial screening and validation of antibodies, some antibody sequences express poorly or not at all. For such antibodies, fusion to MBP provides an effective approach for solving the expression problem.


Subject(s)
Cytoplasm/metabolism , Escherichia coli/growth & development , Single-Chain Antibodies/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , HEK293 Cells , Humans , Protein Engineering , Protein Refolding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
9.
Nat Nanotechnol ; 13(3): 214-219, 2018 03.
Article in English | MEDLINE | ID: mdl-29379205

ABSTRACT

Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.


Subject(s)
Colitis/therapy , Drug Delivery Systems/methods , Liposomes/chemistry , RNA, Small Interfering/administration & dosage , RNAi Therapeutics/methods , Animals , Antibodies, Monoclonal/chemistry , Colitis/genetics , Female , Lipoproteins/chemistry , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/therapeutic use
10.
Antibodies (Basel) ; 7(3)2018 Jul 28.
Article in English | MEDLINE | ID: mdl-31544879

ABSTRACT

Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not achievable with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated, but as many of them are small recombinant fragments, their utility could be limited. For some therapeutic applications, full-size IgGs may be the optimal format. Two challenges should be met to make bispecific IgGs; one is that each heavy chain will only pair with the heavy chain of the second specificity and that homodimerization be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and not with the light chain of the second specificity. The first solution to the first criterion (knobs into holes, KIH) was presented in 1996 by Paul Carter's group from Genentech. Additional solutions were presented later on. However, until recently, out of >120 published bsAb formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested. We present a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL. We name antibodies produced according to this design "BIClonals". Bispecific IgGs where the artificial disulfide bond is placed in the CH1-CL interface are also presented. Briefly, we found that an artificial disulfide bond between VH position 44 to VL position 100 provides for effective and correct H-L chain pairing while also preventing the formation of wrong H-L chain pairs. When the artificial disulfide bond links the CH1 with the CL domain, effective H-L chain pairing also occurs, but in some cases, wrong H-L pairing is not totally prevented. We conclude that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies, hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs, making it necessary to carefully evaluate the optimal solution for each new antibody.

11.
Methods Mol Biol ; 1701: 349-363, 2018.
Article in English | MEDLINE | ID: mdl-29116515

ABSTRACT

Antibody libraries came into existence 25 years ago when the accumulating sequence data of immunoglobulin genes and the advent of the PCR technology made it possible to clone antibody gene repertoires. Phage display (most common) and additional display and screening technologies were applied to pan out desired binding specificities from antibody libraries. "Synthetic" or "semisynthetic" libraries are from naive-non-immunized source and considered to be a source for many different targets, including self-antigens.As other antibody discovery tools, phage display is not an off-the-shelf technology and not offered as a kit but rather requires experience and expertise for making it indeed very useful. Here we present application notes that expand the usefulness of antibody phage display as a very versatile and robust antibody discovery tool.


Subject(s)
Gene Library , Peptide Library , Single-Chain Antibodies , Humans , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/isolation & purification
12.
Protein Eng Des Sel ; 25(10): 539-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22988130

ABSTRACT

Phage display has enabled the rapid isolation of antigen-specific antibodies from combinatorial libraries of V(H) and V(L) genes obtained from lymphocytes of immunized animals. Recently, a different approach to antibody isolation that circumvents library screening and instead relies on the mining of the V(H) and V(L) gene repertoires obtained by high throughput sequencing of cDNAs from bone marrow antibody-secreting cells was reported. Here we compared the antibodies obtained via phage library screening or via repertoire mining of V gene cDNAs obtained from total splenocytes of mice immunized with the hapten trinitrophenyl (TNP) conjugated to carrier proteins. We show that, despite the large heterogeneity of B lymphocytes in the spleen, the most abundant V genes encoded antigen-specific antibodies, indicating that total splenocytes can be used in place of bone marrow plasma cells for antibody discovery at least in high titer animals. While both phage display and repertoire mining yielded antigen-specific antibodies showing comparable affinities by enzyme-linked immunosorbent assay analysis, clones obtained by the latter approach displayed higher selectivity towards TNP relative to control haptens. Interestingly, the antibody genes isolated by phage display were of low abundance or absent from the V gene repertoire obtained by 454 sequencing. Similarly, the highly abundant V genes identified by repertoire mining, that as soluble antibodies were antigen-specific, were found to be poorly displayed on phage and were not enriched by phage panning. Thus, our results reveal that phage display and repertoire mining of immune repertoires are complementary technologies that can yield different antigen-specific antibody clones.


Subject(s)
Antibodies/genetics , Gene Library , Haptens/immunology , Immunoglobulin Variable Region/genetics , Peptide Library , Trinitrobenzenes/immunology , Amino Acid Sequence , Animals , Antibodies/chemistry , Antibodies/immunology , Antibody Affinity , DNA, Complementary/genetics , Female , Immunization , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Sequence Alignment , Spleen/cytology
13.
PLoS One ; 6(1): e15916, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21264238

ABSTRACT

The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins"). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.


Subject(s)
Hepacivirus/metabolism , Protein Engineering/methods , Sequence Deletion/physiology , Toxins, Biological/genetics , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Cell Line , Diphtheria Toxin , Enzyme Precursors , Escherichia coli/genetics , Hepacivirus/genetics , Humans , Peptide Fragments , Protein Structure, Tertiary , Ricin , Serine Proteases , Toxins, Biological/chemical synthesis , Viral Nonstructural Proteins/genetics
14.
Methods Mol Biol ; 562: 115-32, 2009.
Article in English | MEDLINE | ID: mdl-19554291

ABSTRACT

The need for inhibitors for enzymes linked with microbial infection, specifically the NS3 protease of hepatitis C virus (HCV), inspired us to develop a unique, rapid and easy color-based method described herein. The NS3 serine protease of HCV has a role in processing viral polyprotein and it has been implicated in interactions with various cell constituents, resulting in phenotypic changes including malignant transformation. NS3 is currently regarded a prime target for antiviral drugs.We established a genetic screen that is based on coexpression of NS3, a beta-galactosidase reporter that is cleavable by NS3, and potential inhibitors within the same bacterial cell. A single-chain antibody (scFv) library was prepared from spleens of NS3-immunized mice and the screen was used to isolate a panel of protease-inhibiting scFvs. Candidate scFvs were validated for inhibitory activity using an o-nitrophenyl-beta-galactoside (ONPG) hydrolysis assay.The methods can be used more generally to isolate protease-inhibiting cytoplasmic intrabodies able to inhibit proteases or other activities that can be linked with the phenotype of Escherichia coli.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/pharmacology , Escherichia coli/genetics , Hepacivirus/enzymology , Immunoglobulin Variable Region/isolation & purification , Peptide Library , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Base Sequence , Escherichia coli/immunology , Escherichia coli/metabolism , Genetic Vectors , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Mice , Molecular Sequence Data , Sequence Homology, Nucleic Acid , Viral Nonstructural Proteins/metabolism , beta-Galactosidase/metabolism
15.
Methods Mol Biol ; 525: 61-80, xiv, 2009.
Article in English | MEDLINE | ID: mdl-19252839

ABSTRACT

Antibody libraries came into existence 15 years ago when the accumulating sequence data of immunoglobulin genes and the advent of the PCR technology made it possible to clone antibody gene repertoires. Phage display (most common) and additional display and screening technologies were applied to pan out desired binding specificities from antibody libraries. "Synthetic" or "semi-synthetic" libraries are from naïve, non-immunized source and considered to be a source for many different targets, including self-antigens. We describe here how to construct a large human synthetic single-chain Fv (scFv) antibody library displayed on phages, where in vivo-formed complementarity-determining regions (CDRs) are shuffled combinatorially onto germline-derived human variable-region frameworks.


Subject(s)
Antibodies/immunology , Combinatorial Chemistry Techniques/methods , Molecular Biology/methods , Peptide Library , Amino Acid Sequence , Antibodies/chemistry , Antibodies/genetics , Antibody Affinity , Antigens/immunology , Base Sequence , Cloning, Molecular , Complementarity Determining Regions/immunology , Electroporation , Escherichia coli/cytology , Gene Library , Genetic Vectors , Humans , Immobilized Proteins/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Molecular Sequence Data , Polymerase Chain Reaction
16.
Arch Dermatol Res ; 300(8): 441-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18648827

ABSTRACT

In two-thirds of patients with guttate psoriasis (GP), there is good evidence that the eruption is triggered by a streptococcal throat infection. We attempted to determine if a specific epitope of the bacterial pathogen was associated with the humoral immune response in GP patients. Antibody titres against beta-haemolytic streptococci (BHS) extracts in sera from 14 patients with GP, 10 healthy controls and 10 chronic plaque psoriasis (CPP) patients were determined by ELISA. Antibody BHS reactivity was investigated using immunoblotting, followed by epitope mapping using peptide-phage display. The highest GP antibody titres (10,000-25,000) were found in sera that had a matching streptococcal isolate, three sera had high (5,000-12,500) and seven had raised titres (500-5,000). In the healthy control group, three had relatively high and seven lower titres. All the CPP sera had very low titres (<500). In the immunoblots, three major bands were recognised by all the GP sera, and, to a lesser extent, by four healthy controls. No GP-specific protein was identified. Epitope mapping identified 10 phage clones that specifically bound 2 or 3 GP sera, displaying five different peptide sequences that were not streptococcal in origin. These findings suggest that the antigen specificity of the humoral response to BHS in GP does not differ from that of non-psoriatic individuals.


Subject(s)
Antibodies, Bacterial/blood , Psoriasis/immunology , Streptococcus pyogenes/immunology , Adolescent , Adult , Amino Acid Sequence , Base Sequence , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Female , Humans , Immunoblotting , Male , Middle Aged , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL