Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neuroendocrinol ; 35(11): e13279, 2023 11.
Article in English | MEDLINE | ID: mdl-37157881

ABSTRACT

Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile. Rats were administered intranasal NPY (150 µg/rat) or equal volume of vehicle (distilled water), and 7 days later they were tested on the elevated plus maze (EPM) and forced swim test (FST). There was no significant difference in the number of entries or duration in the open or closed arms, or in their anxiety index. Defecation on the EPM and immobility on the FST, measures of anxiety and depressive-like behavior respectively, were similar in both groups. To further characterize potential benefits of intranasal NPY, its effect on fear memory and extinction, important features of PTSD, were examined. Intranasal administration of NPY at the time of the traumatic stress had a profound effect on fear conditioning a week later. It prevented the SPS-triggered impairment in the retention of extinguished behavior, both contextual and cued. The findings support the translation of non-invasive intranasal NPY delivery to the brain for PTSD-behaviors including impairments in sustained extinction of fear memories.


Subject(s)
Neuropeptide Y , Stress Disorders, Post-Traumatic , Humans , Rats , Animals , Neuropeptide Y/pharmacology , Rats, Sprague-Dawley , Administration, Intranasal , Anxiety , Fear , Stress Disorders, Post-Traumatic/drug therapy , Disease Models, Animal , Stress, Psychological
2.
Behav Brain Res ; 439: 114162, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36257560

ABSTRACT

Although most people are subjected to traumatic stress at least once in their lifetime, only a subset develop long-lasting, stress-triggered neuropsychiatric disorders, such as PTSD. Here we examined different transcriptome profiles within the locus coeruleus (LC) and nucleus accumbens (NAc) that may contribute to stress susceptibility. Sprague Dawley male rats were exposed to the single prolonged stress (SPS) model for PTSD. Two weeks later they were tested for their anxiety/avoidance behavior on the Elevated Plus Maze (EPM) and were divided into high and low anxiety-like subgroups. RNA (n = 5 per group) was subsequently isolated from LC and NAc and subjected to RNAseq. Transcriptome analysis was used to identify differentially-expressed genes (DEGs) which differed by at least 50 % with significance of 0.01. The LC had more than six times the number of DEGs than the NAc. Only one DEG was regulated similarly in both locations. Many of the DEGs in the LC were associated with morphological changes, including regulation of actin cytoskeleton, growth factor activity, regulation of cell size, brain development and memory, with KEGG pathway of regulation of actin cytoskeleton. The DEGs in the NAc were primarily related to DNA repair and synthesis, and differential regulation of cytokine production. The analysis identified MTPN (myotrophin) and NR3C1 (glucocorticoid receptor) as important upstream regulators of stress susceptibility in the LC. Overall the study provides new insight into molecular pathways in the LC and NAc that are associated with anxiety-like behavior triggered by stress susceptibility or resilience.


Subject(s)
Nucleus Accumbens , Stress Disorders, Post-Traumatic , Rats , Animals , Male , Rats, Sprague-Dawley , Nucleus Accumbens/metabolism , Transcriptome , Locus Coeruleus/metabolism , Anxiety , Stress Disorders, Post-Traumatic/metabolism , Stress, Psychological
3.
Neurobiol Stress ; 19: 100461, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35789769

ABSTRACT

Exposure to traumatic stress is a major risk factor for development of neuropsychiatric disorders in a sub-population of individuals, while others remain resilient. The mechanisms and contributing factors differentiating between these phenotypes are still unclear. We hypothesize that inter-individual differences in the microbial composition and function contribute to host resilience or susceptibility to stress-induced psychopathologies. The current study aimed to characterize gut microbial community before and after exposure to traumatic stress in an animal model of PTSD. Sprague-Dawley male rats were randomly divided into unstressed controls and experimental group subjected to Single Prolonged Stress (SPS). After 14 days, behavioral analyses were performed using Open Field, Social Interaction and Elevated Plus Maze tests. Based on the anxiety measures, the SPS group was further subdivided into resilient (SPS-R) and susceptible (SPS-S) cohorts. The animals were sacrificed after the last behavioral test and cecum, colon, hippocampus, and medial prefrontal cortex were dissected. Prior to SPS and immediately after Open Field test, fecal samples were collected from each rat for 16S V3-V4 ribosomal DNA sequencing, whereas urine samples were collected before SPS, 90 min into immobilization and on the day of sacrifice to measure epinephrine and norepinephrine levels. Analyses of the fecal microbiota revealed significant differences in microbial communities and in their predictive functionality among the groups before and after SPS stressors. Before SPS, the SPS-S subgroup harbored microbiota with an overall pro-inflammatory phenotype, whereas SPS-R subgroup had microbiota with an overall anti-inflammatory phenotype, with predictive functional pathways enriched in carbohydrate and lipid metabolism and decreased in amino acid metabolism and neurodegenerative diseases. After SPS, the gut microbial communities and their predictive functionality shifted especially in SPS cohorts, with volatility at the genus level correlating inversely with Anxiety Index. In line with the alterations seen in the gut microbiota, the levels of cecal short chain fatty acids were also altered, with SPS-S subgroup having significantly lower levels of acetate, valerate and caproate. The levels of acetate inversely correlated with Anxiety Index. Interestingly, urinary epinephrine and norepinephrine levels were also higher in the SPS-S subgroup at baseline and during stress, indicative of an altered sympathoadrenal stress axis. Finally, shorter colon (marker of intestinal inflammation) and a lower claudin-5 protein expression (marker for increased blood brain barrier permeability) were observed in the SPS-S subgroup. Taken together, our results suggest microbiota is a potential factor in predisposing subjects either to stress susceptibility or resilience. Moreover, SPS triggered significant shifts in the gut microbiota, their metabolites and brain permeability. These findings could lead to new therapeutic directions for PTSD possibly through the controlled manipulation of gut microbiota. It may enable early identification of individuals more likely to develop prolonged anxiogenic symptoms following traumatic stress.

4.
Acad Med ; 97(6): 824-831, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34817408

ABSTRACT

Student-run free clinics (SRFCs) act as primary care providers that bring health care to populations in need and are an important source of undergraduate medical education (UME), guiding trainees through the art of history taking and physical examination. However, they are also social justice and advocacy initiatives-addressing disparity in access to care and educating medical trainees with firsthand exposure to socioeconomic determinants of health as well as language and medical illiteracy barriers. Here, the authors review academic literature examining the impact of SRFCs in their 3 roles: as medical care providers, as components of medical education, and as advocacy organizations. Based on the evidence of that literature and decades of direct SRFC leadership experience, the authors make the case that SRFCs are an undersupported means by which UME institutions contribute to correcting health care disparities and to serving social justice reform.


Subject(s)
Education, Medical, Undergraduate , Student Run Clinic , Ambulatory Care Facilities , Humans , Leadership , Social Justice
5.
Front Behav Neurosci ; 15: 725091, 2021.
Article in English | MEDLINE | ID: mdl-34650410

ABSTRACT

The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.

6.
Front Behav Neurosci ; 15: 705579, 2021.
Article in English | MEDLINE | ID: mdl-34566592

ABSTRACT

The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 µg/rat-four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 µg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 µg, but not 600 µg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 µg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.

7.
Biomolecules ; 10(9)2020 08 27.
Article in English | MEDLINE | ID: mdl-32867327

ABSTRACT

The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.


Subject(s)
Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Sex Characteristics , Stress Disorders, Post-Traumatic/metabolism , Animals , Disease Susceptibility , Humans , Stress Disorders, Post-Traumatic/etiology
8.
Neuropeptides ; 80: 102001, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31916978

ABSTRACT

The neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His26]NPY, [Leu31Pro34]NPY, Y2R agonist NPY (3-36) or NPY were administered to male Sprague-Dawley rats immediately following the last stressor of the single prolonged stress (SPS) protocol, a widely used PTSD animal model. After 7 or 14 days, effects of the treatments were measured on the elevated plus maze (EPM) for anxiety, in forced swim test (FST) for development of depressive-like or re-experiencing behavior, in social interaction (SI) test for impaired social behavior, and acoustic startle response (ASR) for hyperarousal. [D-His26]NPY, but not [Leu31Pro34]NPY nor NPY (3-36) Y2R, was effective in preventing the SPS-elicited development of anxiety. Y1R, but not Y2R agonists prevented development of depressive- feature on FST, with [D-His26]NPY superior to NPY. The results demonstrate that [D-His26]NPY was sufficient to prevent development of anxiety, social impairment and depressive symptoms, and has promise as an early intervention therapy following traumatic stress.


Subject(s)
Anxiety/drug therapy , Neuropeptide Y/pharmacology , Receptors, Neuropeptide Y/drug effects , Reflex, Startle/drug effects , Administration, Intranasal , Animals , Anxiety/chemically induced , Disease Models, Animal , Male , Maze Learning/drug effects , Rats, Sprague-Dawley , Stress Disorders, Post-Traumatic/chemically induced , Stress Disorders, Post-Traumatic/drug therapy
9.
J Exp Psychol Hum Percept Perform ; 45(9): 1248-1264, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31219282

ABSTRACT

Visual search is the task of finding things with uncertain locations. Despite decades of research, the features that guide visual search remain poorly specified, especially in realistic contexts. This study tested the role of two features-shape and orientation-both in the presence and absence of hue information. We conducted five experiments to describe preview-target mismatch effects, decreases in performance caused by differences between the image of the target as it appears in the preview and as it appears in the actual search display. These mismatch effects provide direct measures of feature importance, with larger performance decrements expected for more important features. Contrary to previous conclusions, our data suggest that shape and orientation only guide visual search when color is not available. By varying the probability of mismatch in each feature dimension, we also show that these patterns of feature guidance do not change with the probability that the previewed feature will be invalid. We conclude that the target representations used to guide visual search are much less precise than previously believed, with participants encoding and using color and little else. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Color Perception/physiology , Pattern Recognition, Visual/physiology , Space Perception/physiology , Adult , Female , Form Perception/physiology , Humans , Male , Young Adult
10.
Front Behav Neurosci ; 13: 17, 2019.
Article in English | MEDLINE | ID: mdl-30804766

ABSTRACT

Sex plays an important role in susceptibility to stress triggered disorders. Posttraumatic Stress disorder (PTSD), a debilitating psychiatric disorder developed after exposure to a traumatic event, is two times more prevalent in women than men. However, the vast majority of animal models of PTSD, including single prolonged stress (SPS), were performed mostly with males. Here, we evaluated SPS as an appropriate PTSD model for females in terms of anxiety, depressive symptoms and changes in gene expression in the noradrenergic system in the brain. In addition, we examined intranasal neuropeptide Y (NPY) as a possible treatment in females. Female rats were subjected to SPS and given either intranasal NPY or vehicle in two separate experiments. In the first experiment, stressed females were compared to unstressed controls on forced swim test (FST) and for levels of expression of several genes in the locus coeruleus (LC) 12 days after SPS exposure. Using a separate cohort of animals, experiment two examined stressed females and unstressed controls on the elevated plus maze (EPM) and LC gene expression 7 days after SPS stressors. SPS led to increased anxiety-like behavior on EPM and depressive-like behavior on FST. Following FST, the rats displayed elevated tyrosine hydroxylase (TH), CRHR1 and Y1R mRNA levels in the LC, consistent with increased activation of the noradrenergic system. The expression level of these mRNAs was unchanged following EPM, except Y1R. Intranasal NPY at the doses shown to be effective in males, did not prevent development of depressive or anxiety-like behavior or molecular changes in the LC. The results indicate that while SPS could be an appropriate PTSD model for females, sex differences, such as response to NPY, are important to consider.

11.
Article in English | MEDLINE | ID: mdl-28824540

ABSTRACT

To identify if the absence of the vasoactive intestinal peptide (VIP) gene enhances susceptibility to death from metastatic bladder cancer, two strains of mice were injected with MB49 murine bladder cancer cells. The growth and spread of the cancer was measured over a period of 4 weeks in C57BL/6 mice and 5 weeks in VIP knockout (KO) mice. A Kaplan-Meier plot was constructed to compare control C57BL/6 mice and C57BL/6 mice with MB49 vs. VIP KO controls and VIP KO mice with MB49. The wild-type (WT) strain (C57BL/6) contained the VIP gene, while the other strain, VIP knockout backcrossed to C57BL/6 (VIP KO) did not and was thus unable to endogenously produce VIP. VIP KO mice had increased mortality compared to C57BL/6 mice at 4 weeks. The number of ulcers between both groups was not statistically significant. In vitro studies indicated that the presence VIP in high doses reduced MB49 cell growth, as well as macrophage inhibitory factor (MIF), a growth factor in bladder cancer cells. These findings support the concept that VIP may attenuate susceptibility to death from bladder cancer, and that it exerts its effect via downregulation of MIF.

SELECTION OF CITATIONS
SEARCH DETAIL
...