Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(16): 26435-26450, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710505

ABSTRACT

The influence of aberrations on the beam quality factor of Laguerre-Gaussian beams is investigated. We derive analytical expressions for the beam quality factor due to astigmatism and spherical aberration. We show that the width of a Laguerre-Gaussian beam is a significant parameter that determines the aberration effects on the beam quality factor. For each aberration, we derive an expression for the width that separates the region where the beam quality factor changes infinitesimally and where it changes drastically. The validity of the analytical expressions is assessed by performing numerical simulations. There is excellent agreement between the analytical and numerical results.

2.
Opt Express ; 31(15): 24516-24536, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475277

ABSTRACT

Master Oscillator Power Amplifier (MOPA) systems find extensive use in laser development to increase the optical power of laser emissions from a Master Oscillator (MO). Commonly used are the cylindrical rod MOPAs that are optically excited using a multimode fiber-coupled (FC) diode laser emission in an end-pumped configuration. Current analytical 3D models that incorporate thermal effects, gain saturation, and iterative Fourier beam propagation methods, collectively, rely on static approximations of the evolution of the FC pump beam profile over the longitudinal volume of the amplifier crystal. Furthermore, in general, the spectral behavior of the FC diode emission is assumed to be static, and the thermal wavelength shift is not accounted for in the simulation. In this work, we demonstrate a novel approach for accurate modeling of the multimode FC pump beam emission as a complex field using a phase-only Gaussian to flat-top (FT) diffractive optical element, thus allowing for the inclusion of the pump beam into the iterative propagation method. Additionally, we present a method for precise calibration of the model using simple experimental measurements of the diode emission spectrum. The theoretical model is experimentally validated using an end-pumped Nd:YAG crystal rod to perform single-pass amplification of a Gaussian beam, showing excellent agreement with predicted output powers over the calibrated range of pump powers. Furthermore, we provide experimental data that exhibits a strong correlation between the Gaussian to FT phase-only transformation and the multimode FC diode evolution in free-space propagation.

3.
Opt Express ; 31(11): 17408-17423, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381476

ABSTRACT

Structured light beams that are tailored for purpose have found a myriad of applications, from improved efficiency of laser-based industrial manufacturing processes to enhanced bandwidth in optical communication. While the selection of such modes is readily achievable at low powers (<100 mW) with external shaping devices, creating and controlling structured light at higher powers (>1 W) has proven to be a non-trivial task, particularly if dynamic control is required. Here we demonstrate the power amplification of low-power higher-order Laguerre-Gaussian modes using a novel in-line dual-pass master oscillator power amplifier (MOPA). The amplifier, operating at a wavelength of 1064 nm, consists of a polarization-based interferometer that alleviates parasitic lasing effects. Through our approach we demonstrate a gain factor of up to 17×, corresponding to an overall enhancement of 300% in amplification compared to a single-pass output configuration while preserving the beam quality of the input mode. These findings are confirmed computationally using a three-dimensional split-step model and show excellent agreement with the experimental data.

4.
Opt Express ; 31(11): 17593-17608, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381489

ABSTRACT

Here we report the generation and power amplification of higher-order (l = 2) orbital angular momentum (OAM) beams using a compact end-pumped Nd:YAG Master-Oscillator-Power-Amplifier (MOPA) design. We analysed the thermally-induced wavefront aberrations of the Nd:YAG crystal using a Shack-Hartmann sensor as well as modal decomposition of the field and show that the natural astigmatism in such systems results in the splitting of vortex phase singularities. Finally, we show how this can be ameliorated in the far field through engineering of the Gouy phase, realising an amplified vortex purity of 94% while achieving an amplification enhancement of up to 1200%. Our comprehensive theoretical and experimental investigation will be of value to communities pursuing high-power applications of structured light, from communications to materials processing.

5.
Light Sci Appl ; 10(1): 50, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33686054

ABSTRACT

Vector beams, non-separable in spatial mode and polarisation, have emerged as enabling tools in many diverse applications, from communication to imaging. This applicability has been achieved by sophisticated laser designs controlling the spin and orbital angular momentum, but so far is restricted to only two-dimensional states. Here we demonstrate the first vectorially structured light created and fully controlled in eight dimensions, a new state-of-the-art. We externally modulate our beam to control, for the first time, the complete set of classical Greenberger-Horne-Zeilinger (GHZ) states in paraxial structured light beams, in analogy with high-dimensional multi-partite quantum entangled states, and introduce a new tomography method to verify their fidelity. Our complete theoretical framework reveals a rich parameter space for further extending the dimensionality and degrees of freedom, opening new pathways for vectorially structured light in the classical and quantum regimes.

6.
Opt Express ; 29(1): 315-329, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33362116

ABSTRACT

Structured light with more controllable degrees-of-freedom (DoFs) is an exciting topic with versatile applications. In contrast to conventional vector vortex beams (VVBs) with two DoFs of orbital angular momentum (OAM) and polarization, a hybrid ray-wave structure was recently proposed [Optica 7(7), 820-831 (2020)], which simultaneously manifests multiple DoFs such as ray trajectory, coherent state phase, trajectory combination, besides OAM and polarization. Here we further generalize this exotic structure as the astigmatic hybrid VVB by hatching a new DoF of astigmatic degree. Importantly, the transverse topology varies with propagation, e.g. a linearly distributed hybrid trajectory pattern can topologically evolve to a circularly polygonal star shape, where the number of singularity changes from zero to multiple in a single beam. The propagation-dependent evolution can be easily controlled by the astigmatic degree, including as a vector vortex state such that different astigmatic trajectories have different polarizations. We experimentally generate such beams from a simple laser with a special astigmatic conversion by combined spherical and cylindrical lenses, and the results agree well with our theoretical simulation. With our new structured light, the propagation-multiplexing multi-DoF patterns can be controlled in a single beam, which can largely extend related applications such as high-dimensional large-capacity optical communication, laser machining, and particle trapping.

7.
Appl Opt ; 52(23): 5766-72, 2013 Aug 10.
Article in English | MEDLINE | ID: mdl-23938430

ABSTRACT

In this paper, we explore theoretically and experimentally the laser beam shaping ability resulting from the coaxial superposition of two coherent Gaussian beams (GBs). This technique is classified under interferometric laser beam shaping techniques contrasting with the usual ones based on diffraction. The experimental setup does not involve the use of some two-wave interferometer but uses a spatial light modulator for the generation of the necessary interference term. This allows one to avoid the thermal drift occurring in interferometers and gives a total flexibility of the key parameter setting the beam transformation. In particular, we demonstrate the reshaping of a GB into a bottle beam or top-hat beam in the focal plane of a focusing lens.

8.
Opt Express ; 20(18): 19714-25, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-23037024

ABSTRACT

We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes in real-time. This yields the complete information about the optical field, from which the Poynting vector and the wavefront are deduced. Two different wavefront reconstruction options are outlined: reconstruction from the phase for scalar beams, and reconstruction from the Poynting vector for inhomogeneously polarized beams. Results are compared to Shack-Hartmann measurements that serve as a reference and are shown to reproduce the wavefront and phase with very high fidelity.


Subject(s)
Holography/methods , Lasers , Models, Theoretical , Computer Simulation , Light , Scattering, Radiation
9.
Opt Lett ; 37(13): 2478-80, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22743427

ABSTRACT

A procedure for the real-time analysis of laser modes using a phase-only spatial light modulator is outlined. The procedure involves encoding into digital holograms by complex amplitude modulation a set of orthonormal basis functions into which the initial field is decomposed. This approach allows any function to be encoded and refreshed in real time (60 Hz). We implement a decomposition of guided modes propagating in optical fibers and show that we can successfully reconstruct the observed field with very high fidelity.

SELECTION OF CITATIONS
SEARCH DETAIL
...