Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Heliyon ; 10(17): e37243, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39286227

ABSTRACT

Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39061884

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.

3.
Biomed Pharmacother ; 175: 116729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776676

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS: The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION: EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Survival , Diabetes Mellitus, Type 2 , Hippocampus , Memory , Metformin , Neurons , Receptor, trkB , Signal Transduction , Stress, Psychological , Animals , Metformin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Male , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Rats , Neurons/drug effects , Neurons/metabolism , Memory/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Cell Survival/drug effects , Receptor, trkB/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Environment , Memory Disorders/drug therapy , Rats, Wistar
4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542474

ABSTRACT

Diarylpentanoids are synthesized to overcome curcumin's poor bioavailability and low stability to show enhanced anti-cancer effects. Little is known about the anti-cancer effects of diarylpentanoid MS17 (1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one) in colon cancer cells. This study aimed to elucidate molecular mechanisms and pathways modulated by MS17 in colon cancer based on proteomic profiling of primary SW480 and metastatic SW620 colon cancer cells. Cytotoxicity and apoptotic effects of MS17 were investigated using MTT assay, morphological studies, and Simple Western analysis. Proteomic profiling using LC/MS analysis identified differentially expressed proteins (DEPs) in MS17-treated cells, with further analysis in protein classification, gene ontology enrichment, protein-protein interaction network and Reactome pathway analysis. MS17 had lower EC50 values (SW480: 4.10 µM; SW620: 2.50 µM) than curcumin (SW480: 17.50 µM; SW620: 13.10 µM) with a greater anti-proliferative effect. MS17 treatment of 1× EC50 induced apoptotic changes in the morphology of SW480 and SW620 cells upon 24 h treatment. A total of 24 and 92 DEPs (fold change ≥ 1.50) were identified in SW480 and SW620 cells, respectively, upon MS17 treatment of 2× EC50 for 24 h. Pathway analysis showed that MS17 may induce its anti-cancer effects in both cells via selected DEPs associated with the top enriched molecular pathways. RPL and RPS ribosomal proteins, heat shock proteins (HSPs) and ubiquitin-protein ligases (UBB and UBC) were significantly associated with cellular responses to stress in SW480 and SW620 cells. Our findings suggest that MS17 may facilitate the anti-proliferative and apoptotic activities in primary (SW480) and metastatic (SW620) human colon cancer cells via the cellular responses to stress pathway. Further investigation is essential to determine the alternative apoptotic mechanisms of MS17 that are independent of caspase-3 activity and Bcl-2 protein expression in these cells. MS17 could be a potential anti-cancer agent in primary and metastatic colon cancer cells.


Subject(s)
Alkadienes , Colonic Neoplasms , Curcumin , Humans , Curcumin/pharmacology , Proteomics , Apoptosis , Cell Line, Tumor , Colonic Neoplasms/metabolism
5.
Curr Neuropharmacol ; 22(1): 140-151, 2024.
Article in English | MEDLINE | ID: mdl-36703582

ABSTRACT

Parkinson's disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogenactivated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/ß-catenin signaling pathways.


Subject(s)
Herbicides , Parkinson Disease , Humans , Paraquat/toxicity , Herbicides/toxicity , Signal Transduction , Apoptosis
7.
Biomed Pharmacother ; 165: 115170, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481930

ABSTRACT

Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.


Subject(s)
Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , Phosphatidylinositol 3-Kinases , Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Cell Line, Tumor
8.
Biology (Basel) ; 12(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36979171

ABSTRACT

Background: The Western-style diet-induced type 2 diabetes mellitus (T2D) may eventually trigger neurodegeneration and memory impairment. Thus, it is essential to identify effective therapeutic strategies to overcome T2D complications. This study aimed to investigate the effects of environmental enrichment (EE) and metformin interventions on metabolic dysfunctions, hippocampal neuronal death, and hippocampal-dependent memory impairments in high-fat/high-sucrose (HFS) diet-induced T2D rats. Methods: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage); D group (HFS diet + conventional cage); DE group (HFS diet + EE cage/6hr daily); and DM group (HFS diet + metformin + conventional cage). Body weight was measured every week. T-maze tasks, anthropometric, biochemical, histological, and morphometric parameters were measured. The expression changes of hippocampal genes were also analyzed. Results: The anthropometric and biochemical parameters were improved in DE and DM groups compared with the D group. DE and DM groups had significantly higher T-maze percentages than the D group. These groups also had better histological and morphometric parameters than the D group. The interventions of EE and metformin enhanced the expression of hippocampal genes related to neurogenesis and synaptic plasticity (BDNF/TrkB binding, PI3K-Akt, Ras-MAPK, PLCγ-Ca2+, and LTP). Conclusion: Environmental enrichment (EE) and metformin improved metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in HFS diet-induced T2D rats. The underlying mechanisms of these interventions involved the expression of genes that regulate neurogenesis and synaptic plasticity.

9.
Nutrients ; 15(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36839156

ABSTRACT

High-grade adult-type diffuse gliomas are the most common and deadliest malignant adult tumors of the central nervous system. Despite the advancements in the multimodality treatment of high-grade adult-type diffuse gliomas, the five-year survival rates still remain poor. The biggest challenge in treating high-grade adult-type diffuse gliomas is the intra-tumor heterogeneity feature of the glioma tumors. Introducing dietary flavonoids to the current high-grade adult-type diffuse glioma treatment strategies is crucial to overcome this challenge, as flavonoids can target several molecular targets. This review discusses the anticancer mechanism of flavonoids (quercetin, rutin, chrysin, apigenin, naringenin, silibinin, EGCG, genistein, biochanin A and C3G) through targeting molecules associated with high-grade adult-type diffuse glioma cell proliferation, apoptosis, oxidative stress, cell cycle arrest, migration, invasion, autophagy and DNA repair. In addition, the common molecules targeted by the flavonoids such as Bax, Bcl-2, MMP-2, MMP-9, caspase-8, caspase-3, p53, p38, Erk, JNK, p38, beclin-1 and LC3B were also discussed. Moreover, the clinical relevance of flavonoid molecular targets in high-grade adult-type diffuse gliomas is discussed with comparison to small molecules inhibitors: ralimetinib, AMG232, marimastat, hydroxychloroquine and chloroquine. Despite the positive pre-clinical results, further investigations in clinical studies are warranted to substantiate the efficacy and safety of the use of flavonoids on high-grade adult-type diffuse glioma patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Adult , Brain Neoplasms/genetics , Glioma/therapy , Flavonoids , Quercetin , Rutin
11.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232799

ABSTRACT

microRNAs are small non-coding RNAs that regulate several genes post-transcriptionally by complementarity pairing. Since discovery, they have been reported to be involved in a variety of biological functions and pathologies including cancer. In cancer, they can act as a tumor suppressor or oncomiR depending on the cell type. Studies have shown that miRNA-based therapy, either by inhibiting an oncomiR or by inducing a tumor suppressor, is effective in cancer treatment. This review focusses on the role of miRNA in cancer, therapeutic approaches with miRNAs and how they can be effectively delivered into a system. We have also summarized the patents and clinical trials in progress for miRNA therapy.


Subject(s)
MicroRNAs , Neoplasms , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy
12.
Mol Neurobiol ; 59(6): 3353-3369, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35306641

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in triggering apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis of PD in in vitro and in vivo models.


Subject(s)
Parkinson Disease , Apoptosis , Dopaminergic Neurons/metabolism , Humans , Nerve Degeneration/pathology , Paraquat/toxicity , Parkinson Disease/metabolism , Substantia Nigra/pathology
13.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216255

ABSTRACT

Female breast cancer is the world's most prevalent cancer in 2020. Chemotherapy still remains a backbone in breast cancer therapy and is crucial in advanced and metastatic breast cancer treatment. The clinical efficiency of chemotherapy regimens is limited due to tumor heterogeneity, chemoresistance, and side effects. Chemotherapeutic drug combinations with natural products hold great promise for enhancing their anticancer efficacy. Curcumin is an ideal chemopreventive and chemotherapy agent owning to its multitargeting function on various regulatory molecules, key signaling pathways, and pharmacological safety. This review aimed to elucidate the potential role of curcumin in enhancing the efficacy of doxorubicin, paclitaxel, 5-fluorouracil, and cisplatin via combinational therapy. Additionally, the molecular mechanisms underlying the chemosensitizing activity of these combinations have been addressed. Overall, based on the promising therapeutic potential of curcumin in combination with conventional chemotherapy drugs, curcumin is of considerable value to develop as an adjunct for combination chemotherapy with current drugs to treat breast cancer. Furthermore, this topic may provide the frameworks for the future research direction of curcumin-chemotherapy combination studies and may benefit in the development of a novel therapeutic strategy to maximize the clinical efficacy of anticancer drugs while minimizing their side effects in the future breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Curcumin/pharmacology , Animals , Humans , Signal Transduction/drug effects
14.
J Biomol Struct Dyn ; 40(7): 3325-3335, 2022 04.
Article in English | MEDLINE | ID: mdl-33164654

ABSTRACT

G protein-coupled receptors (GPCRs) belong to the largest family of protein targets comprising over 800 members in which at least 500 members are the therapeutic targets. Among the GPCRs, G protein-coupled estrogen receptor-1 (GPER-1) has shown to have the ability in estrogen signaling. As GPER-1 plays a critical role in several physiological responses, GPER-1 has been considered as a potential therapeutic target to treat estrogen-based cancers and other non-communicable diseases. However, the progress in the understanding of GPER-1 structure and function is relatively slow due to the availability of a only a few selective GPER-1 modulators. As with many GPCRs, the X-ray crystal structure of GPER-1 is yet to be resolved and thus has led the researchers to search for new GPER-1 modulators using homology models of GPER-1. In this review, we aim to summarize various approaches used in the generation of GPER-1 homology model and their applications that have resulted in new GPER-1 ligands.


Subject(s)
Receptors, Estrogen , Receptors, G-Protein-Coupled , Estrogens , GTP-Binding Proteins/metabolism , Ligands , Receptors, Estrogen/chemistry , Receptors, G-Protein-Coupled/chemistry
15.
J Biomol Struct Dyn ; 40(4): 1617-1628, 2022 03.
Article in English | MEDLINE | ID: mdl-33054574

ABSTRACT

Cancer ranks in second place among the cause of death worldwide. Cancer progress in multiple stages of carcinogenesis and metastasis programs through complex pathways. Sex hormones and their receptors are the major factors in promoting cancer progression. Among them, G protein-coupled estrogen receptor-1 (GPER) has shown to mediate cellular signaling pathways and cancer cell proliferation. However, the lack of GPER protein structure limited the search for new modulators. In this study, we curated an extensive database of natural products to discover new potential GPER modulators. We used a combination of virtual screening techniques to generate a homology model of GPER and subsequently used that for the screening of 30,926 natural products from a public database to identify potential active modulators of GPER. The best hits were further screened through the ADMET filter and confirmed by docking analysis. Moreover, molecular dynamics simulations of best hits were also carried out to assess the stability of the ligand-GPER complex. This study predicted several potential GPER modulators with novel scaffolds that could be further investigated and used as the core for the development of novel GPER modulators.Communicated by Ramaswamy H. Sarma.


Subject(s)
Receptors, Estrogen , Receptors, G-Protein-Coupled , Cell Proliferation , Estrogens , GTP-Binding Proteins/metabolism , Ligands , Receptors, Estrogen/chemistry , Receptors, G-Protein-Coupled/chemistry
16.
Front Pharmacol ; 12: 772510, 2021.
Article in English | MEDLINE | ID: mdl-34867402

ABSTRACT

Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.

17.
Front Pharmacol ; 12: 768861, 2021.
Article in English | MEDLINE | ID: mdl-34887764

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.

19.
Cancers (Basel) ; 13(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439380

ABSTRACT

Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.

20.
Front Pharmacol ; 12: 707335, 2021.
Article in English | MEDLINE | ID: mdl-34366863

ABSTRACT

Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.

SELECTION OF CITATIONS
SEARCH DETAIL