Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(1): 1288-1300, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33356091

ABSTRACT

Double helical DNA structure is one of the most beautiful and fascinating nanoarchitecture nature has produced. Mimicking nature's design by the tailored synthesis of semiconductor nanomaterials such as WO3 into a DNA-like double helical superstructure could impart special properties, such as enhanced stability, electrical conductivity, information storage, signal processing, and catalysis, owing to the synergistic interaction across helices. However, double helical WO3 synthesis is extremely challenging and has never been reported earlier. This investigation presents the first-ever report on a facile synthesis route for designing a DNA-like double helical WO3-x/C microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated WO3-x nanorods. This innovative design strategy is completely template-free and does not require predesigned helical templates or hydro/solvothermal treatment. Detailed spectroscopic material characterization and electrochemical studies confirmed that the double helical structure with carbon fiber-WO3-x heterostructures enabled effective induction and distribution of oxygen vacancies along with W5+/W6+ redox surface states. Furthermore, faster electrode-electrolyte interfacial kinetics, improved electrical conductivity, and cycling stability has been observed in the carbon fiber-WO3-x heterostructures which resulted in a high area specific capacitance of 401 mF cm-2 at 2 mA cm-2 with excellent capacitance retention of >94% for more than 5000 cycles. Additionally, the carbon fiber-WO3-x heterostructures demonstrated promising performance when fabricated in a solid-state asymmetric supercapacitor device with the power density of 498 W kg-1 at an energy density of 15.4 W h kg-1. Therefore, the rare DNA-like double helical WO3-x/C superstructure synthesized in this study could open new doorways toward in situ, facile fabrication of double helical superstructures for energy and environmental applications.

2.
J Environ Manage ; 258: 110029, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31929065

ABSTRACT

The low surface area of TiO2 (50 m2g-1 - Degussa P25) due to randomly oriented, agglomerated nanostructures and charge carrier recombination tendency, has till date been its major limitation for photocatalytic remediation of polluted wastewater. This study presents an innovative process to design super porous TiO2 nanostructures with high effective surface area (238 m2g-1), robust, structurally ordered mesoporosity via a simple sol-gel assisted reflux method. Detailed material characterization studies suggest that the higher degree of intermolecular ligation in novel templates such as butanetetracarboxylic or tricarballylic acid modified titanium hydroxide gels resulted in retainment of the porous structure during the urea assisted combustion synthesis. The induction of robust structural porosity is accompanied by a reduction in pore size distribution, an increase in pore volume leading to significantly higher total surface area of the synthesized TiO2. Detailed investigation of dye adsorption kinetics and photocatalytic degradation kinetics, complemented by kinetic modeling analysis confirmed that the super porous TiO2 with robust mesoporous structure outperforms the rest of synthesized TiO2 catalyst (having only agglomerate porosity) in terms of its superior adsorption capacity, faster diffusion kinetics and photocatalytic activity for degradation of Amaranth dye. Thus, the super porous TiO2 shows promising potential for application in sustainable photocatalytic technology for remediation of wastewater contaminated with azo dyes.


Subject(s)
Azo Compounds , Wastewater , Adsorption , Catalysis , Porosity , Titanium
3.
Photochem Photobiol Sci ; 16(7): 1126-1138, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28548665

ABSTRACT

The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO2 under sunlight. Mesoporous anatase TiO2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min-1 was obtained for the photocatalytic degradation of Amaranth using TiO2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation intermediates and products is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL