Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Braz. J. Microbiol. ; 45(4): 1239-1245, Oct.-Dec. 2014. ilus, graf
Article in English | VETINDEX | ID: vti-29100

ABSTRACT

A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.


Subject(s)
Pseudomonas stutzeri/metabolism , Trialkyltin Compounds/metabolism , Bacterial Typing Techniques , Biotransformation , Chromatography, Liquid , Cytosol/chemistry , Fatty Acids/analysis , Geologic Sediments , India , Magnetic Resonance Spectroscopy , Pseudomonas stutzeri/classification , Spectroscopy, Fourier Transform Infrared
2.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1239-1245, Oct.-Dec. 2014. ilus, graf
Article in English | LILACS | ID: lil-741273

ABSTRACT

A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.


Subject(s)
Pseudomonas stutzeri/metabolism , Trialkyltin Compounds/metabolism , Bacterial Typing Techniques , Biotransformation , Chromatography, Liquid , Carbon/metabolism , Cytosol/chemistry , Fatty Acids/analysis , Geologic Sediments , India , Magnetic Resonance Spectroscopy , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/growth & development , Pseudomonas stutzeri/isolation & purification , Spectroscopy, Fourier Transform Infrared
3.
Braz J Microbiol ; 45(4): 1239-45, 2014.
Article in English | MEDLINE | ID: mdl-25763027

ABSTRACT

A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.


Subject(s)
Pseudomonas stutzeri/metabolism , Trialkyltin Compounds/metabolism , Bacterial Typing Techniques , Biotransformation , Carbon/metabolism , Chromatography, Liquid , Cytosol/chemistry , Fatty Acids/analysis , Geologic Sediments , India , Magnetic Resonance Spectroscopy , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/growth & development , Pseudomonas stutzeri/isolation & purification , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL