Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 41(17): 2180-2195, 2020 Jul.
Article in English | MEDLINE | ID: mdl-30517064

ABSTRACT

The production, characterization and potential application in heavy metals and dyes removal of a novel heteropolysaccharide-protein named, gpHb, produced by an Haloarchaeal strain Halogeometricum borinquense strain A52 were investigated. The highest gpHb yield of 13.96 ± 0.32 g/L was produced under optimized conditions by response surface methodology. We focused on the characteristics and flocculation performance of gpHb. An important attribute of protein with 16 protein types identified that occupied a total content of 50.2% in the gpHb. Additionally, carbohydrate that occupied 30.4% of the total bioflocculant content consisted of three monosaccharides. Fourier transform-infrared spectroscopy indicated the presence of carboxyl, hydroxyl, amine, amide, and sulphate groups. To further study flocculation activities, factors such as bioflocculant dosage, temperature, pH, salinity and cations addition were tested. In comparison to the chemical flocculant polyaluminium chloride, gpHb maintain high activity at large range of salinity and its flocculation activity was higher on both sides of pH 7. Addition of trivalent cation mainly Fe3+ enhances the flocculating rate indicating that the bioflocculant is negatively charged. Its practical applicability was established for heavy metals and dyes removal from saline aqueous solutions. The highest removal efficiency was observed with Cr3+ (91.4%) and Ni2+ (89.60%) and with basic blue 3 (83.8%) and basic red (78.6%). The excellent flocculation activity of gpHb under saline condition suggests its potential industrial utility for treatment of textile and tannery wastewaters.


Subject(s)
Coloring Agents , Metals, Heavy , Flocculation , Hydrogen-Ion Concentration , Wastewater
2.
Genomics ; 111(6): 1802-1814, 2019 12.
Article in English | MEDLINE | ID: mdl-30529640

ABSTRACT

Here, we report the genomic features and the bioremediation potential of Halomonas desertis G11, a new halophilic species which uses crude oil as a carbon and energy source and displays intrinsic resistance to salt stress conditions (optimum growth at 10% NaCl). G11 genome (3.96 Mb) had a mean GC content of 57.82%, 3622 coding sequences, 480 subsystems and 64 RNA genes. Annotation predicted 38 genes involved in osmotic stress including the biosynthesis of osmoprotectants glycine-betaine, ectoine and osmoregulated periplasmic glucans. Genome analysis revealed also the versatility of the strain for emulsifying crude oil and metabolizing hydrocarbons. The ability of G11 to degrade crude oil components and to secrete a glycolipid biosurfactant with satisfying properties was experimentally confirmed and validated. Our results help to explain the exceptional capacity of G11 to survive at extreme desertic conditions, and highlight the metabolic features of this organism that has biotechnological and ecological potentialities.


Subject(s)
Genes, Bacterial , Halomonas/genetics , Molecular Sequence Annotation , Petroleum/microbiology , Surface-Active Agents , Biodegradation, Environmental , Desert Climate , Halomonas/metabolism , Petroleum/metabolism , Tunisia
3.
Front Microbiol ; 9: 34, 2018.
Article in English | MEDLINE | ID: mdl-29527191

ABSTRACT

A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40-90°C), pH (6-10), and salt concentration (up to 300 mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...