Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(41): 27022-27043, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36320834

ABSTRACT

A naphthylthioic-based emissive probe (M) bearing a hydroxyl and amine group was designed and synthesized via a one-step Schiff base reaction process. The probe was characterized spectroscopically using 1H NMR, UV-Vis and fluorescence spectrophotometers. The probe turned out to be spectroscopically and colorimetrically selective and sensitive to multiple cations and anions. Interestingly, the probe displayed characteristics of excited-state intramolecular proton transfer (ESIPT)-driven dual emissive channels; experiencing fluorescence enhancement upon the molar additions of Al3+ as well as the anions used, events presumably ascribed to chelation fluorescence enhancement (CHEF), hydrogen bonding and deprotonation effects. Moreover, the fluorometric titration with Hg2+ resulted in ratiometric spectral behaviors of M, with the disappearance of the peak at 450 nm, concomitant with the appearance of a new peak at 520 nm, distinguished by a clear isosbestic point, the same behaviors exhibited by Sn2+ and Ag+ analytes towards M. The introduction of all other cations used, resulted in fluorescence quenching, attributable to chelation enhanced fluorescence quenching (CHEQ), thereby inhibiting the ESIPT process. The experiments were all carried out in the aqueous environment medium of DMSO-H2O (9 : 1) at ambient temperature. Theoretical density functional theory calculations were carried out to gain insight into the interaction of M with cations and anions, and their influence on the HOMO-LUMO energy gaps.

2.
Heliyon ; 7(5): e06956, 2021 May.
Article in English | MEDLINE | ID: mdl-34027164

ABSTRACT

The photophysical properties of Hexamethylenetetramine (HMT) were investigated through physical methods and spectroscopically in dimethyl sulfoxide (DMSO) at ambient temperature. Evidently, HMT turned out as a sensor, selective and sensitive to silver ion (Ag+) only, among other cations, through colorimetric and fluorometric activities (observable by naked eye) and spectrally, both by UV-Vis and fluorescence spectroscopy. The resulting complex pedant (HMT-Ag) is highly responsive to the presence of fluoride ion (F-) in aqueous soluble DMSO, evidenced by changes in absorption spectra as well as fluorescence quenching, upon addition of the respective ions. Consequently, spectral changes induced by the addition of these ions, were consistently concomitant with colour changes, from colourless to light brown (HMT-Ag) to dark brown (HMT-Ag-F) in daylight condition, while bright light blue colour (HMT) to dark blue brownish (HMT-Ag) under UV-light conditions. The experimental results were complimented by theoretical studies, which are well within agreement of one another.

3.
RSC Adv ; 11(47): 29466-29485, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479545

ABSTRACT

A ditopic multi-colorimetric probe based on the phenylpridyl-thioic moiety (EN) was synthesized via a Schiff base reaction mechanism and characterized using 1H NMR and UV-vis spectroscopy. The colorimetric analyses carried out revealed that EN was capable of discriminating between a number of heavy metal cations via coordination induced charge transfer, as well as between anions through hydrogen bonding induced charge transfer, in DMSO-H2O (9 : 1). In particular, the ditopic probe could spectrally and colorimetrically recognize the most toxic heavy metal cations of Cd2+, Pb2+ and Hg2+, among others, in DMSO-H2O. Additionally, EN was selective and sensitive to the presence of CN-, F-, AcO- and H2PO4 - in the same solvent system as cations. The reversibility and reproducibility studies showed that EN exhibited complementary IMP/INH logic functions, based on colour and spectral switching (ON/OFF), modulated by F-/Al3+. The real time application of the probe was tested on food grade products to detect the presence of F- in toothpastes and mouthwash dissolved in water, as well as cations in underground water (normally saline), which displayed substantial responses. Thus, EN displayed an excellent scope of response and can thus be developed for real time sensing kits, which could be used instantly in on-field analysis. Theoretical studies were conducted to complement the experimental work.

4.
Dalton Trans ; 50(1): 336-345, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33306081

ABSTRACT

A C2-symmetry dianthrimide based probe (D) and its hydroxide complex (D-OH) are reported as a chromo-fluorogenic sensor for rapid and sensitive detection of trace amounts of water in polar aprotic solvents. Based on intramolecular charge transfer in the excited state, the pink-coloured probe binds with the hydroxide ions to induce a colorimetric response of the resulting complex (D-OH), green in colour. The hydroxide based complex is used as a H2O or moisture sensor, tested in DMF and DCM, due to its high instability in moisture-containing organic solvents and paper materials/fabrics. The probe exhibits higher sensitivity towards pure H2O in DMSO with the LOD measured at 0.0067% v/v, perhaps even lower, in DMF (LOD = 0.100% v/v) and DCM (LOD = 0.013% v/v). The dissociation of OH- from D in the presence of H2O is responsible for the colorimetric and fluorometric responses. The litmus test paper strips prepared by adsorbing or coating them with the D-OH complex in DMSO could not be entirely achieved in an open system, due to the highly unstable state of the complex in the presence of water traces or the atmospheric moisture accumulated in the paper materials. The complex D-OH is also highly suspected to compete for adsorbed water in silica gel crystals in desiccators, due to its high affinity towards water molecules. The experimental studies were complemented by theoretical calculations using the Spartan'14 software package, and the computed data are in good agreement with the spectral data.

5.
Analyst ; 145(1): 295, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31799552

ABSTRACT

Correction for 'A colorimetric probe for the real-time naked eye detection of cyanide and hydroxide ions in tap water: experimental and theoretical studies' by Veikko Uahengo et al., Analyst, 2019, 144, 6422-6431.

6.
Analyst ; 144(21): 6422-6431, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31584578

ABSTRACT

Herein, a colorimetric sensor (L) based on a naphthyl derivative bearing hydrazone receptors was synthesized via a one-step reaction process, and its recognition properties towards biologically important anions in an acetonitrile-water mixture were investigated by naked-eye observation and UV-Vis and 1H NMR spectroscopy. The molar addition of anions, such as TBAF-, TBAOH-, TBACN- and TBAAcO-, induced a significant red shift in the charge transfer band (Δλ = 73 nm, from 337 nm to 410 nm), in agreement with visible "naked eye" detectable colorimetric activities; in addition, soaked-in-L paper strips were prepared, which could significantly discriminate cyanide (KCN) and hydroxide (NaOH) ions dissolved in tap water via the litmus test method. This study was complemented by density functional theory computations to gain more insight into the interaction between L and anions.


Subject(s)
Colorimetry/methods , Cyanides/analysis , Drinking Water/chemistry , Hydroxides/analysis , Cyanides/chemistry , Density Functional Theory , Hydrazones/chemistry , Hydroxides/chemistry , Models, Molecular , Molecular Conformation , Time Factors
7.
RSC Adv ; 9(65): 37926-37938, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-35541817

ABSTRACT

A naphthoquinone based colorimetric sensor (N) bearing hydrazone receptors in aqueous media was developed and its recognition properties towards biologically important anions in DMSO-water mixture (9 : 1) were investigated using spectroscopic methods. The hydrazone based receptors showed selectivity towards anions (F-, OH-, CN- and AcO-), through naked eye observable colour changes, from green to light blue (F-, CN- and AcO-) and violet (OH-). The colour changes were concomitant with spectral changes. The sensor could also detect the presence of fluoride ions in commercially available toothpastes, through remarkable colour and spectral changes. In addition, test paper strips prepared from N were able to detect the presence of cyanide (KCN) and hydroxide (NaOH) in tap water. The study was complimented by density functional theory computations to have more insight in the interaction between N and the anions.

SELECTION OF CITATIONS
SEARCH DETAIL