Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108527

ABSTRACT

Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of NF-ƙB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL), and is increasingly recognised as a marker of poor prognosis in a number of diseases. Here we demonstrate that in Malaysian adults with falciparum and vivax malaria, OPG is increased, and its ligands TRAIL and RANKL decreased, in proportion to disease severity. In volunteers experimentally infected with P. falciparum and P. vivax, RANKL was suppressed, while TRAIL was unexpectedly increased, suggesting binding of OPG to RANKL prior to TRAIL. We also demonstrate that P. falciparum stimulates B cells to produce OPG in vitro, and that B cell OPG production is increased ex vivo in patients with falciparum, vivax and knowlesi malaria. Our findings provide further evidence of the importance of the OPG/RANKL/TRAIL pathway in pathogenesis of diseases involving systemic inflammation, and may have implications for adjunctive therapies. Further evaluation of the role of B cell production of OPG in host responses to malaria and other inflammatory diseases is warranted.

2.
EBioMedicine ; 105: 105189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851058

ABSTRACT

BACKGROUND: The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. METHODS: We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. FINDINGS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated. INTERPRETATION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency. FUNDING: National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).


Subject(s)
Ferritins , Hepcidins , Homeostasis , Iron , Malaria , Humans , Female , Iron/metabolism , Iron/blood , Male , Adult , Hepcidins/blood , Hepcidins/metabolism , Malaria/blood , Malaria/parasitology , Malaria/metabolism , Ferritins/blood , Receptors, Transferrin/metabolism , Receptors, Transferrin/blood , Middle Aged , Malaysia/epidemiology , Young Adult , Longitudinal Studies , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/metabolism , Erythropoietin/metabolism , Erythropoietin/blood , Biomarkers , Parasitemia/blood
3.
medRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38196596

ABSTRACT

Background: The interaction between iron deficiency and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. Methods: We retrieved samples and associated data from 55 participants enrolled in malaria VIS, and 171 malaria patients and 30 healthy controls enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. Results: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline iron status (ferritin) was associated with post-treatment increases in liver transaminase levels. In Malaysian malaria patients, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. Hepcidin normalised by day 28; however, ferritin and sTfR both remained elevated 4 weeks following admission. Conclusion: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency.

4.
Int J Parasitol ; 48(12): 903-913, 2018 10.
Article in English | MEDLINE | ID: mdl-30176235

ABSTRACT

A major mechanism of host-mediated control of blood-stage Plasmodium infection is thought to be removal of parasitized red blood cells (pRBCs) from circulation by the spleen or phagocytic system. The rate of parasite removal is thought to be further increased by anti-malarial drug treatment, contributing to the effectiveness of drug therapy. It is difficult to directly compare pRBC removal rates in the presence and absence of treatment, since in the absence of treatment the removal rate of parasites is obscured by the extent of ongoing parasite proliferation. Here, we transfused a single generation of fluorescently-labelled Plasmodium berghei pRBCs into mice, and monitored both their disappearance from circulation, and their replication to produce the next generation of pRBCs. In conjunction with a new mathematical model, we directly estimated host removal of pRBCs during ongoing infection, and after drug treatment. In untreated mice, pRBCs were removed from circulation with a half-life of 15.1 h. Treatment with various doses of mefloquine/artesunate did not alter the pRBC removal rate, despite blocking parasite replication effectively. An exception was high dose artesunate, which doubled the rate of pRBC removal (half-life of 9.1 h). Phagocyte depletion using clodronate liposomes approximately halved the pRBC removal rate during untreated infection, indicating a role for phagocytes in clearance. We next assessed the importance of pRBC clearance for the decrease in the parasite multiplication rate after high dose artesunate treatment. High dose artesunate decreased parasite replication ∼46-fold compared with saline controls, with inhibition of replication contributing 23-fold of this, and increased pRBC clearance contributing only a further 2.0-fold. Thus, in our in vivo systems, drugs acted primarily by inhibiting parasite replication, with drug-induced increases in pRBC clearance making only minor contributions to overall drug effect.


Subject(s)
Antimalarials/administration & dosage , Blood/parasitology , Malaria/drug therapy , Malaria/parasitology , Parasite Load , Parasitemia/parasitology , Plasmodium berghei/isolation & purification , Animals , Artesunate/administration & dosage , Disease Models, Animal , Fluorescence , Malaria/immunology , Mefloquine/administration & dosage , Mice , Models, Theoretical , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/isolation & purification , Plasmodium berghei/genetics , Staining and Labeling
5.
J Immunol ; 200(4): 1443-1456, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29321276

ABSTRACT

Differentiation of CD4+ Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stage Plasmodium parasites, yet their influence over Th cell immunity remains unclear. In this study, we used Plasmodium-reactive TCR transgenic CD4+ T cells, termed PbTII cells, during nonlethal P. chabaudi chabaudi AS and P. yoelii 17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stage Plasmodium parasites.


Subject(s)
Cell Differentiation/immunology , Interferon Regulatory Factor-3/immunology , Malaria/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Animals , Female , Germinal Center/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spleen/immunology
6.
Sci Immunol ; 2(9)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28345074

ABSTRACT

Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

SELECTION OF CITATIONS
SEARCH DETAIL