Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Front Neurol ; 15: 1330203, 2024.
Article in English | MEDLINE | ID: mdl-38854960

ABSTRACT

Ultra-low field (ULF) magnetic resonance imaging (MRI) holds the potential to make MRI more accessible, given its cost-effectiveness, reduced power requirements, and portability. However, signal-to-noise ratio (SNR) drops with field strength, necessitating imaging with lower resolution and longer scan times. This study introduces a novel Fourier-based Super Resolution (FouSR) approach, designed to enhance the resolution of ULF MRI images with minimal increase in total scan time. FouSR combines spatial frequencies from two orthogonal ULF images of anisotropic resolution to create an isotropic T2-weighted fluid-attenuated inversion recovery (FLAIR) image. We hypothesized that FouSR could effectively recover information from under-sampled slice directions, thereby improving the delineation of multiple sclerosis (MS) lesions and other significant anatomical features. Importantly, the FouSR algorithm can be implemented on the scanner with changes to the k-space trajectory. Paired ULF (Hyperfine SWOOP, 0.064 tesla) and high field (Siemens, Skyra, 3 Tesla) FLAIR scans were collected on the same day from a phantom and a cohort of 10 participants with MS or suspected MS (6 female; mean ± SD age: 44.1 ± 4.1). ULF scans were acquired along both coronal and axial planes, featuring an in-plane resolution of 1.7 mm × 1.7 mm with a slice thickness of 5 mm. FouSR was evaluated against registered ULF coronal and axial scans, their average (ULF average) and a gold standard SR (ANTs SR). FouSR exhibited higher SNR (47.96 ± 12.6) compared to ULF coronal (36.7 ± 12.2) and higher lesion conspicuity (0.12 ± 0.06) compared to ULF axial (0.13 ± 0.07) but did not exhibit any significant differences contrast-to-noise-ratio (CNR) compared to other methods in patient scans. However, FouSR demonstrated superior image sharpness (0.025 ± 0.0040) compared to all other techniques (ULF coronal 0.021 ± 0.0037, q = 5.9, p-adj. = 0.011; ULF axial 0.018 ± 0.0026, q = 11.1, p-adj. = 0.0001; ULF average 0.019 ± 0.0034, q = 24.2, p-adj. < 0.0001) and higher lesion sharpness (-0.97 ± 0.31) when compared to the ULF average (-1.02 ± 0.37, t(543) = -10.174, p = <0.0001). Average blinded qualitative assessment by three experienced MS neurologists showed no significant difference in WML and sulci or gyri visualization between FouSR and other methods. FouSR can, in principle, be implemented on the scanner to produce clinically useful FLAIR images at higher resolution on the fly, providing a valuable tool for visualizing lesions and other anatomical structures in MS.

2.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897168

ABSTRACT

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Tumor Microenvironment , Humans , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Neuroendocrine Cells/pathology , Neuroendocrine Cells/metabolism , Female , Male , Prognosis
3.
Neuroimage ; 296: 120680, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38857819

ABSTRACT

Magnetic Resonance Imaging (MRI) can provide the location and signal characteristics of pathological regions within a postmortem tissue block, thereby improving the efficiency of histopathological studies. However, such postmortem-MRI guided histopathological studies have so far only been performed on fixed samples as imaging tissue frozen at the time of extraction, while preserving its integrity, is significantly more challenging. Here we describe the development of cold-postmortem-MRI, which can preserve tissue integrity and help target techniques such as transcriptomics. As a first step, RNA integrity number (RIN) was used to determine the rate of tissue biomolecular degradation in mouse brains placed at various temperatures between -20 °C and +20 °C for up to 24 h. Then, human tissue frozen at the time of autopsy was immersed in 2-methylbutane, sealed in a bio-safe tissue chamber, and cooled in the MRI using a recirculating chiller to determine MRI signal characteristics. The optimal imaging temperature, which did not show significant RIN deterioration for over 12 h, at the same time giving robust MRI signal and contrast between brain tissue types was deemed to be -7 °C. Finally, MRI was performed on human tissue blocks at this optimal imaging temperatures using a magnetization-prepared rapid gradient echo (MPRAGE, isotropic resolution between 0.3-0.4 mm) revealing good gray-white matter contrast and revealing subpial, subcortical, and deep white matter lesions. RINs measured before and after imaging revealed no significant changes (n = 3, p = 0.18, paired t-test). In addition to improving efficiency of downstream processes, imaging tissue at sub-zero temperatures may also improve our understanding of compartment specificity of MRI signal.


Subject(s)
Autopsy , Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Mice , Autopsy/methods , Animals , Freezing , Male , Female , Mice, Inbred C57BL , Neuroimaging/methods
4.
mSystems ; 9(6): e0094823, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38700364

ABSTRACT

The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.


Subject(s)
Archaea , Archaeal Proteins , Genome, Archaeal , Phylogeny , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Genome, Archaeal/genetics
5.
Brain Commun ; 6(3): fcae158, 2024.
Article in English | MEDLINE | ID: mdl-38818331

ABSTRACT

Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.

6.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38313300

ABSTRACT

Introduction: Postmortem MRI provides insight into location of pathology within tissue blocks, enabling efficient targeting of histopathological studies. While postmortem imaging of fixed tissue is gaining popularity, imaging tissue frozen at the time of extraction is significantly more challenging. Methods: Tissue integrity was examined using RNA integrity number (RIN), in mouse brains placed between -20 °C and 20 °C for up to 24 hours, to determine the highest temperature that could potentially be used for imaging without tissue degeneration. Human tissue frozen at the time of autopsy was sealed in a tissue chamber filled with 2-methylbutane to prevent contamination of the MRI components. The tissue was cooled to a range of temperatures in a 9.4T MRI using a recirculating aqueous ethylene glycol solution. MRI was performed using a magnetization-prepared rapid gradient echo (MPRAGE) sequence with inversion time of 1400 ms to null the signal from 2-methylbutane bath, isotropic resolution between 0.3-0.4 mm, and scan time of about 4 hours was used to study the anatomical details of the tissue block. Results and Discussion: A temperature of -7 °C was chosen for imaging as it was below the highest temperature that did not show significant RIN deterioration for over 12 hours, at the same time gave robust imaging signal and contrast between brain tissue types. Imaging performed on various human tissue blocks revealed good gray-white matter contrast and revealing subpial, subcortical, and deep white matter lesions typical of multiple sclerosis enabling further spatially targeted studies. Conclusion: Here, we describe a new method to image cold tissue, while maintaining tissue integrity and biosafety during scanning. In addition to improving efficiency of downstream processes, imaging tissue at sub-zero temperatures may also improve our understanding of compartment specificity of MRI signal.

7.
Nature ; 627(8002): 165-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326613

ABSTRACT

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Subject(s)
Arachnoid , Brain , Dura Mater , Animals , Humans , Mice , Arachnoid/anatomy & histology , Arachnoid/blood supply , Arachnoid/immunology , Arachnoid/metabolism , Biological Transport , Brain/anatomy & histology , Brain/blood supply , Brain/immunology , Brain/metabolism , Dura Mater/anatomy & histology , Dura Mater/blood supply , Dura Mater/immunology , Dura Mater/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Profiling , Magnetic Resonance Imaging , Mice, Transgenic , Subarachnoid Space/anatomy & histology , Subarachnoid Space/blood supply , Subarachnoid Space/immunology , Subarachnoid Space/metabolism , Cerebrospinal Fluid/metabolism , Veins/metabolism
8.
Ann Neurol ; 95(5): 941-950, 2024 May.
Article in English | MEDLINE | ID: mdl-38362961

ABSTRACT

OBJECTIVE: To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS: Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS: The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION: These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.


Subject(s)
Gray Matter , HIV Infections , Magnetic Resonance Imaging , White Matter , Humans , Male , Female , Gray Matter/pathology , Gray Matter/diagnostic imaging , Middle Aged , HIV Infections/complications , HIV Infections/pathology , HIV Infections/psychology , HIV Infections/diagnostic imaging , Adult , White Matter/pathology , White Matter/diagnostic imaging , Longitudinal Studies , Cross-Sectional Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Neuropsychological Tests , Atrophy/pathology
9.
Neurology ; 102(3): e207966, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38165297

ABSTRACT

BACKGROUND AND OBJECTIVES: A subgroup of patients with multiple sclerosis (MS) presents focal paramagnetic rims at the border between cortex and white matter (juxtacortical paramagnetic rims [JPRs]). We investigated the presence of this finding in our in vivo MS cohort and explored its potential clinical relevance. Moreover, we exploited postmortem MRI of fixed whole MS brains to (1) detect those rims and (2) investigate their histologic correlation. METHODS: Quantitative susceptibility mapping (QSM) and magnetization-prepared 2 rapid acquisition gradient-echo (MP2RAGE) images at 3T-MRI of 165 patients with MS from the in vivo cohort were screened for JPRs and the presence of cortical lesions. Five postmortem brains from patients with MS were imaged with 3T-MRI to obtain QSM and MP2RAGE sequences. Tissue blocks containing JPRs were excised and paraffin-embedded slices stained by immunohistochemistry for myelin basic protein (for myelin) and anti-CR3/43 (for major histocompatibility complex II-positive microglia/macrophages). DAB-Turnbull stain was performed to detect iron. RESULTS: JPRs are present in approximately 10% of in vivo patients and are associated with increased cortical lesion load. One of the 5 postmortem brains showed JPRs. Histologically, JPRs correspond to an accumulation of activated iron-laden phagocytes and are associated with demyelination of the whole overlying cortical ribbon. DISCUSSION: JPRs are a novel potential MRI biomarker of focal cortical demyelination, which seems related to global cortical pathology and might be useful for diagnostic and stratification purposes in a clinical setting.


Subject(s)
Clinical Relevance , Multiple Sclerosis , Humans , Prevalence , Multiple Sclerosis/diagnostic imaging , Autopsy , Iron
10.
Invest Radiol ; 59(3): 243-251, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37493285

ABSTRACT

BACKGROUND: Leptomeningeal contrast enhancement (LME) on T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI is a reported marker of leptomeningeal inflammation, which is known to be associated with progression of multiple sclerosis (MS). However, this MRI approach, as typically implemented on clinical 3-tesla (T) systems, detects only a few enhancing foci in ~25% of patients and has thus been criticized as poorly sensitive. PURPOSE: To compare an optimized 3D real-reconstruction inversion recovery (Real-IR) MRI sequence on a clinical 3 T scanner to T2-FLAIR for prevalence, characteristics, and clinical/radiological correlations of LME. MATERIALS AND METHODS: We obtained 3D T2-FLAIR and Real-IR scans before and after administration of standard-dose gadobutrol in 177 scans of 154 participants (98 women, 64%; mean ± SD age: 49 ± 12 years), including 124 with an MS-spectrum diagnosis, 21 with other neurological and/or inflammatory disorders, and 9 without neurological history. We calculated contrast-to-noise ratios (CNR) in 20 representative LME foci and determined association of LME with cortical lesions identified at 7 T (n = 19), paramagnetic rim lesions (PRL) at 3 T (n = 105), and clinical/demographic data. RESULTS: We observed focal LME in 73% of participants on Real-IR (70% in established MS, 33% in healthy volunteers, P < 0.0001), compared to 33% on T2-FLAIR (34% vs. 11%, P = 0.0002). Real-IR showed 3.7-fold more LME foci than T2-FLAIR ( P = 0.001), including all T2-FLAIR foci. LME CNR was 2.5-fold higher by Real-IR ( P < 0.0001). The major determinant of LME status was age. Although LME was not associated with cortical lesions, the number of PRL was associated with the number of LME foci on both T2-FLAIR ( P = 0.003) and Real-IR ( P = 0.0003) after adjusting for age, sex, and white matter lesion volume. CONCLUSIONS: Real-IR a promising tool to detect, characterize, and understand the significance of LME in MS. The association between PRL and LME highlights a possible role of the leptomeninges in sustaining chronic inflammation.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Middle Aged , Multiple Sclerosis/pathology , Magnetic Resonance Imaging , Meninges/diagnostic imaging , Meninges/pathology , Inflammation/pathology
11.
Front Neuroimaging ; 2: 1252261, 2023.
Article in English | MEDLINE | ID: mdl-38107773

ABSTRACT

Introduction: Automatic whole brain and lesion segmentation at 7T presents challenges, primarily from bias fields, susceptibility artifacts including distortions, and registration errors. Here, we sought to use deep learning algorithms (D/L) to do both skull stripping and whole brain segmentation on multiple imaging contrasts generated in a single Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) acquisition on participants clinically diagnosed with multiple sclerosis (MS), bypassing registration errors. Methods: Brain scans Segmentation from 3T and 7T scanners were analyzed with software packages such as FreeSurfer, Classification using Derivative-based Features (C-DEF), nnU-net, and a novel 3T-to-7T transfer learning method, Pseudo-Label Assisted nnU-Net (PLAn). 3T and 7T MRIs acquired within 9 months from 25 study participants with MS (Cohort 1) were used for training and optimizing. Eight MS patients (Cohort 2) scanned only at 7T, but with expert annotated lesion segmentation, was used to further validate the algorithm on a completely unseen dataset. Segmentation results were rated visually by experts in a blinded fashion and quantitatively using Dice Similarity Coefficient (DSC). Results: Of the methods explored here, nnU-Net and PLAn produced the best tissue segmentation at 7T for all tissue classes. In both quantitative and qualitative analysis, PLAn significantly outperformed nnU-Net (and other methods) in lesion detection in both cohorts. PLAn's lesion DSC improved by 16% compared to nnU-Net. Discussion: Limited availability of labeled data makes transfer learning an attractive option, and pre-training a nnUNet model using readily obtained 3T pseudo-labels was shown to boost lesion detection capabilities at 7T.

12.
J Clin Med ; 12(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959191

ABSTRACT

Neurosurgeons evaluate MRI scans to document whether surgical treatment has reduced syrinx size. Manual measurement of syrinx volume is time-consuming and potentially introduces operator error and bias. Developing convenient semiautomated volumetric analysis methods may encourage their clinical implementation and improve syringomyelia monitoring. We analyzed 30 SPGR axial MRI scans from 15 pre- and postoperative Chiari I and syringomyelia patients using two semiautomated (SCAT and 3DQI) methods and a manual Cavalieri (CAV) method. Patients' spinal cord and syrinx volumes pre- and postoperatively were compared by paired t-test. A decrease in syrinx volume (mm3) after surgery was detected across all methods. Mean syrinx volume (± SD) measured by CAV (n = 30) was, preoperatively, 4515 mm3 ± 3720, postoperatively 1109 ± 1469; (p = 0.0004). SCAT was, pre, 4584 ± 3826, post, 1064 ± 1465; (p = 0.0007) and 3DQI was, pre, 4027 ± 3805, post, 819 ± 1242; (p = 0.001). 3DQI and CAV detected similar mean spinal cord volumes before (p = 0.53) and after surgery (p = 0.23), but SCAT volumes differed significantly (p = 0.005, p = 0.0001). The SCAT and 3DQI semiautomated methods recorded surgically related syrinx volume changes efficiently and with enough accuracy for clinical decision-making and research studies.

13.
medRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37886541

ABSTRACT

Background and objectives: Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods: A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results: 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010µl, range 13-9888 vs median 267µl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183µl, range 270-9888 vs median 321µl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion: CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.

14.
J Neuroimaging ; 33(6): 941-952, 2023.
Article in English | MEDLINE | ID: mdl-37587544

ABSTRACT

BACKGROUND AND PURPOSE: Multicenter study designs involving a variety of MRI scanners have become increasingly common. However, these present the issue of biases in image-based measures due to scanner or site differences. To assess these biases, we imaged 11 volunteers with multiple sclerosis (MS) with scan and rescan data at four sites. METHODS: Images were acquired on Siemens or Philips scanners at 3 Tesla. Automated white matter lesion detection and whole-brain, gray and white matter, and thalamic volumetry were performed, as well as expert manual delineations of T1 magnetization-prepared rapid acquisition gradient echo and T2 fluid-attenuated inversion recovery lesions. Random-effect and permutation-based nonparametric modeling was performed to assess differences in estimated volumes within and across sites. RESULTS: Random-effect modeling demonstrated model assumption violations for most comparisons of interest. Nonparametric modeling indicated that site explained >50% of the variation for most estimated volumes. This expanded to >75% when data from both Siemens and Philips scanners were included. Permutation tests revealed significant differences between average inter- and intrasite differences in most estimated brain volumes (P < .05). The automatic activation of spine coil elements during some acquisitions resulted in a shading artifact in these images. Permutation tests revealed significant differences between thalamic volume measurements from acquisitions with and without this artifact. CONCLUSION: Differences in brain volumetry persisted across MR scanners despite protocol harmonization. These differences were not well explained by variance component modeling; however, statistical innovations for mitigating intersite differences show promise in reducing biases in multicenter studies of MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Neuroimaging , Bias
15.
J Fluoresc ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450083

ABSTRACT

Visible and near-infrared (NIR) upconversion luminescence (UCL) emissions originating from the BaY2F8: Yb3+, Tm3+ systems were investigated under a laser excitation at 980 nm. The BaY2F8:20 mol% Yb3+, x mol% Tm3+ and BaY2F8: y mol% Yb3+, 0.5 mol% Tm3+ phosphors showed prominent UCL at 800 and 810 nm. The optimized doping concentrations of Yb3+ and Tm3+ in the BaY2F8 host matrix were evaluated, their spectroscopic properties were determined, and studies on their temperature-dependent behaviour were carried out. The temperature-sensing properties were studied by generating the fluorescence intensity ratio (FIR) of the UCL peaks originating from the thermally-coupled energy levels of the Tm3+ ions. The Stark sublevels of 1G4 level of Tm3+ ions were utilized to estimate the temperature-sensing abilities of the phosphor.

16.
Article in English | MEDLINE | ID: mdl-37147136

ABSTRACT

BACKGROUND AND OBJECTIVES: SARS-CoV-2 infection has been associated with a syndrome of long-term neurologic sequelae that is poorly characterized. We aimed to describe and characterize in-depth features of neurologic postacute sequelae of SARS-CoV-2 infection (neuro-PASC). METHODS: Between October 2020 and April 2021, 12 participants were seen at the NIH Clinical Center under an observational study to characterize ongoing neurologic abnormalities after SARS-CoV-2 infection. Autonomic function and CSF immunophenotypic analysis were compared with healthy volunteers (HVs) without prior SARS-CoV-2 infection tested using the same methodology. RESULTS: Participants were mostly female (83%), with a mean age of 45 ± 11 years. The median time of evaluation was 9 months after COVID-19 (range 3-12 months), and most (11/12, 92%) had a history of only a mild infection. The most common neuro-PASC symptoms were cognitive difficulties and fatigue, and there was evidence for mild cognitive impairment in half of the patients (MoCA score <26). The majority (83%) had a very disabling disease, with Karnofsky Performance Status ≤80. Smell testing demonstrated different degrees of microsmia in 8 participants (66%). Brain MRI scans were normal, except 1 patient with bilateral olfactory bulb hypoplasia that was likely congenital. CSF analysis showed evidence of unique intrathecal oligoclonal bands in 3 cases (25%). Immunophenotyping of CSF compared with HVs showed that patients with neuro-PASC had lower frequencies of effector memory phenotype both for CD4+ T cells (p < 0.0001) and for CD8+ T cells (p = 0.002), an increased frequency of antibody-secreting B cells (p = 0.009), and increased frequency of cells expressing immune checkpoint molecules. On autonomic testing, there was evidence for decreased baroreflex-cardiovagal gain (p = 0.009) and an increased peripheral resistance during tilt-table testing (p < 0.0001) compared with HVs, without excessive plasma catecholamine responses. DISCUSSION: CSF immune dysregulation and neurocirculatory abnormalities after SARS-CoV-2 infection in the setting of disabling neuro-PASC call for further evaluation to confirm these changes and explore immunomodulatory treatments in the context of clinical trials.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Female , Male , Humans , COVID-19/complications , SARS-CoV-2 , Brain , Catecholamines
17.
Neurology ; 100(24): e2466-e2476, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37105760

ABSTRACT

BACKGROUND AND OBJECTIVES: Neurologic outcomes in people with HIV (PWH) on long-duration antiretroviral therapy (ART) are not fully understood, and the underlying pathophysiology is unclear. To address this, we established a cohort of such individuals and compared them with HIV-negative controls using a novel matching technique. Both groups underwent extensive cognitive testing, evaluation for psychiatric measures, and MRI and CSF analyses. METHODS: Participants underwent comprehensive neuropsychological testing and completed standardized questionnaires measuring depressive symptoms, perceptions of own functioning, and activities of daily living as part of an observational study. Brain MRI and lumbar puncture were optional. Coarsened Exact Matching was used to reduce between-group differences in age and sex, and weighted linear/logistic regression models were used to assess the effect of HIV on outcomes. RESULTS: Data were analyzed from 155 PWH on ART for at least 15 years and 100 HIV-negative controls. Compared with controls, PWH scored lower in the domains of attention/working memory (PWH least square mean [LSM] = 50.4 vs controls LSM = 53.1, p = 0.008) and motor function (44.6 vs 47.7, p = 0.009) and a test of information processing speed (symbol search 30.3 vs 32.2, p = 0.003). They were more likely to self-report a higher number of cognitive difficulties in everyday life (p = 0.011). PWH also reported more depressive symptoms, general anxiety, and use of psychiatric medications (all with p < 0.05). PWH had reduced proportions of subcortical gray matter on MRI (ß = -0.001, p < 0.001), and CSF showed elevated levels of neurofilament light chain (664 vs 529 pg/mL, p = 0.01) and tumor necrosis factor α (0.229 vs 0.156 ng/mL, p = 0.0008). DISCUSSION: PWH, despite effective ART for over a decade, displayed neurocognitive deficits and mood abnormalities. MRI and CSF analyses revealed reduced brain volume and signs of ongoing neuronal injury and neuroinflammation. As the already large proportion of virologically controlled PWH continues to grow, longitudinal studies should be conducted to elucidate the implications of cognitive, psychiatric, MRI, and CSF abnormalities in this group.


Subject(s)
Cognitive Dysfunction , HIV Infections , Humans , Activities of Daily Living , HIV Infections/drug therapy , Cognition , Memory, Short-Term
18.
bioRxiv ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711940

ABSTRACT

Dimension reduction tools preserving similarity and graph structure such as t-SNE and UMAP can capture complex biological patterns in high-dimensional data. However, these tools typically are not designed to separate effects of interest from unwanted effects due to confounders. We introduce the partial embedding (PARE) framework, which enables removal of confounders from any distance-based dimension reduction method. We then develop partial t-SNE and partial UMAP and apply these methods to genomic and neuroimaging data. Our results show that the PARE framework can remove batch effects in single-cell sequencing data as well as separate clinical and technical variability in neuroimaging measures. We demonstrate that the PARE framework extends dimension reduction methods to highlight biological patterns of interest while effectively removing confounding effects.

19.
J Neuroimaging ; 33(3): 434-445, 2023.
Article in English | MEDLINE | ID: mdl-36715449

ABSTRACT

BACKGROUND AND PURPOSE: Cortical demyelinated lesions are prevalent in multiple sclerosis (MS), associated with disability, and have recently been incorporated into MS diagnostic criteria. Presently, advanced and ultrahigh-field MRIs-not routinely available in clinical practice-are the most sensitive methods for detection of cortical lesions. Approaches utilizing MRI sequences obtainable in routine clinical practice remain an unmet need. We plan to assess the sensitivity of the ratio of T1 -weighted and T2 -weighted (T1 /T2 ) signal intensity for focal cortical lesions in comparison to other high-field imaging methods. METHODS: 3-Tesla and 7-Tesla MRI collected from 10 adults with MS were included in the study. T1 /T2 images were calculated by dividing 3T T1 -weighted (T1 w) images by 3T T2 -weighted (T2 w) fluid-attenuated inversion recovery images for each participant. A total of 614 cortical lesions were identified using 7T T2 *w and T1 w images and corresponding voxels were assessed on registered 3T images. Signal intensities were compared across 3T imaging sequences, including T1 /T2 , T1 w, T2 w, and inversion recovery susceptibility-weighted imaging with enhanced T2 weighting (IR-SWIET) images. RESULTS: T1 /T2 images demonstrated a larger contrast between median lesional and nonlesional cortical signal intensity (median ratio = 1.29, range: 1.19-1.38) when compared to T1 w (1.01, 0.97-1.10, p < .002), T2 w (1.17, 1.07-1.26, p < .002), and IR-SWIET (1.21, 1.01-1.29, p < .03). CONCLUSION: T1 /T2 images are sensitive to cortical lesions. Approaches incorporating T1 /T2 could improve the accessibility of cortical lesion detection in research settings and clinical practice.


Subject(s)
Multiple Sclerosis , Adult , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods
20.
J Spinal Cord Med ; 46(6): 950-957, 2023 11.
Article in English | MEDLINE | ID: mdl-34855576

ABSTRACT

PURPOSE: The purpose of this work was to employ a semi-automatic method for measuring spinal cord cross-sectional area (SCCSA) and investigate the correlations between diffusion tensor imaging (DTI) metrics and SCCSA for the cervical and thoracic spinal cord for typically developing pediatric subjects and pediatric subject with spinal cord injury. METHODS: Ten typically developing (TD) pediatric subjects and ten pediatric subjects with spinal cord injury (SCI) were imaged using a Siemens Verio 3 T MR scanner to acquire DTI and high-resolution anatomic scans covering the cervical and thoracic spinal cord (C1-T12). SCCSA was measured using a semi-automated edge detection algorithm for the entire spinal cord. DTI metrics were obtained from whole cord axial ROIs at each vertebral level. SCCSA measures were compared to DTI metrics by vertebral level throughout the entire cord, and above and below the injury site. Correlation analysis was performed to compare SCCSA, DTI and clinical measures as determined by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination. RESULTS: In subjects with SCI, FA and SCCSA had a positive correlation (r = 0.81, P < 0.01), while RD and SCCSA had a negative correlation (r = -0.68, P = 0.02) for the full spinal cord. FA and SCCSA were correlated above (r = 0.56, P < 0.01) and below (r = 0.54, P < 0.01) the injury site. TD subjects showed negative correlations between AD and SCCSA (r = -0.73, P = 0.01) and RD and SCCSA (r = -0.79, P < 0.01). CONCLUSION: The ability to quickly and effectively measure SCCSA in subjects with SCI has the potential to allow for a better understanding of the progression of atrophy following a SCI. Correlations between cord cross section and DTI metrics by vertebral level suggest that imaging inferior and superior to lesion may yield useful information for diagnosis and prognosis.


Subject(s)
Spinal Cord Injuries , Humans , Child , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/pathology , Diffusion Tensor Imaging/methods , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...