Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534122

ABSTRACT

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Chromosomes, Bacterial , Drug Resistance, Multiple, Bacterial , Escherichia coli , Mutation , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Genetic Fitness , Ciprofloxacin/pharmacology , Humans , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Drug Resistance, Bacterial/genetics , Streptomycin/pharmacology
2.
Commun Biol ; 6(1): 331, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973402

ABSTRACT

Evolution of microbial traits depends on the interaction of a species with its environment as well as with other coinhabiting species. However, our understanding of the evolution of specific microbial traits, such as antibiotic resistance in complex environments is limited. Here, we determine the role of interspecies interactions on the dynamics of nitrofurantoin (NIT) resistance selection among Escherichia coli. We created a synthetic two-species community comprised of two variants of E. coli (NIT susceptible and resistant) and Bacillus subtilis in minimal media with glucose as the sole carbon source. We show that the presence of B. subtilis significantly slows down the selection for the resistant E. coli mutant when NIT is present and that this slowdown is not due to competition for resources. Instead, the dampening of NIT resistance enrichment is largely mediated by extracellular compounds produced by B. subtilis with the peptide YydF playing a significant role. Our results not only demonstrate the impact of interspecies interactions on the evolution of microbial traits but also show the importance of using synthetic microbial systems in unravelling relevant interactions and mechanisms affecting the evolution of antibiotic resistance. This finding implies that interspecies interactions should be considered to better understand and predict resistance evolution in the clinic as well as in nature.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli/genetics , Nitrofurantoin , Drug Resistance, Bacterial/genetics
3.
Microorganisms ; 9(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34683400

ABSTRACT

Predator impacts on prey diversity are often studied among higher organisms over short periods, but microbial predator-prey systems allow examination of prey-diversity dynamics over evolutionary timescales. We previously showed that Escherichia coli commonly evolved minority mucoid phenotypes in response to predation by the bacterial predator Myxococcus xanthus by one time point of a coevolution experiment now named MyxoEE-6. Here we examine mucoid frequencies across several MyxoEE-6 timepoints to discriminate between the hypotheses that mucoids were increasing to fixation, stabilizing around equilibrium frequencies, or heading to loss toward the end of MyxoEE-6. In four focal coevolved prey populations, mucoids rose rapidly early in the experiment and then fluctuated within detectable minority frequency ranges through the end of MyxoEE-6, generating frequency dynamics suggestive of negative frequency-dependent selection. However, a competition experiment between mucoid and non-mucoid clones found a predation-specific advantage of the mucoid clone that was insensitive to frequency over the examined range, leaving the mechanism that maintains minority mucoidy unresolved. The advantage of mucoidy under predation was found to be associated with reduced population size after growth (productivity) in the absence of predators, suggesting a tradeoff between productivity and resistance to predation that we hypothesize may reverse mucoid vs non-mucoid fitness ranks within each MyxoEE-6 cycle. We also found that mucoidy was associated with diverse colony phenotypes and diverse candidate mutations primarily localized in the exopolysaccharide operon yjbEFGH. Collectively, our results show that selection from predatory bacteria can generate apparently stable sympatric phenotypic polymorphisms within coevolving prey populations and also allopatric diversity across populations by selecting for diverse mutations and colony phenotypes associated with mucoidy. More broadly, our results suggest that myxobacterial predation increases long-term diversity within natural microbial communities.

4.
Nat Commun ; 10(1): 4301, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541093

ABSTRACT

Generalist bacterial predators are likely to strongly shape many important ecological and evolutionary features of microbial communities, for example by altering the character and pace of molecular evolution, but investigations of such effects are scarce. Here we report how predator-prey interactions alter the evolution of fitness, genomes and phenotypic diversity in coevolving bacterial communities composed of Myxococcus xanthus as predator and Escherichia coli as prey, relative to single-species controls. We show evidence of reciprocal adaptation and demonstrate accelerated genomic evolution specific to coevolving communities, including the rapid appearance of mutator genotypes. Strong parallel evolution unique to the predator-prey communities occurs in both parties, with predators driving adaptation at two prey traits associated with virulence in bacterial pathogens-mucoidy and the outer-membrane protease OmpT. Our results suggest that generalist predatory bacteria are important determinants of how complex microbial communities and their interaction networks evolve in natural habitats.


Subject(s)
Bacteria/genetics , Evolution, Molecular , Microbial Interactions/genetics , Microbial Interactions/physiology , Microbiota/genetics , Microbiota/physiology , Adaptation, Physiological , Bacterial Physiological Phenomena/genetics , Bacterial Proteins/genetics , Biological Coevolution , Escherichia coli/genetics , Escherichia coli/physiology , Genetic Fitness , Myxococcus xanthus/genetics , Myxococcus xanthus/physiology , Phenotype , Porins/genetics , Virulence
5.
Proc Biol Sci ; 285(1875)2018 03 28.
Article in English | MEDLINE | ID: mdl-29593113

ABSTRACT

Microbial genotypes with similarly high proficiency at a cooperative behaviour in genetically pure groups often exhibit fitness inequalities caused by social interaction in mixed groups. Winning competitors in this scenario have been referred to as 'cheaters' in some studies. Such interaction-specific fitness inequalities, as well as social exploitation (in which interaction between genotypes increases absolute fitness), might evolve due to selection for competitiveness at the focal behaviour or might arise non-adaptively due to pleiotropy, hitchhiking or genetic drift. The bacterium Myxococcus xanthus sporulates during cooperative development of multicellular fruiting bodies. Using M. xanthus lineages that underwent experimental evolution in allopatry without selection on sporulation, we demonstrate that interaction-specific fitness inequalities and facultative social exploitation during development readily evolved indirectly among descendant lineages. Fitness inequalities between evolved genotypes were not caused by divergence in developmental speed, as faster-developing strains were not over-represented among competition winners. In competitions between ancestors and several evolved strains, all evolved genotypes produced more spores than the ancestors, including losers of evolved-versus-evolved competitions, indicating that adaptation in non-developmental contexts pleiotropically increased competitiveness for spore production. Overall, our results suggest that fitness inequalities caused by social interaction during cooperative processes may often evolve non-adaptively in natural populations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Genetic Fitness/physiology , Myxococcus xanthus/physiology , Confidence Intervals , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Gene Deletion , Genetic Fitness/genetics , Genotype , Myxococcus xanthus/genetics , Rifampin/metabolism , Spores, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL