Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Pharm ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377300

ABSTRACT

This study aimed to develop and optimize formulations containinga BCS Class IV drug by improving its solubility and permeability. Herein development of self-emulsifying solid lipid matrices was investigated as carrier systems for a BCS Class IV model drug. Self-emulsifying drug delivery systems (SEDDS) have been extensively investigated for formulating drugs with poor water solubility. However, manufacturing SEDDS is challenging. These systems usually have low drug-loading capacities, and the incorporated drugs tend to recrystallize during storage, which severely impacts the storage stability in vitro and performance in vivo. Moreover, they require greater amounts (>80%) of lipid carriers, cosolvents, surfactants, and other excipients to keep them from recrystallizing. This in turn is again challenging for high-dose drugs as it affects the size of the final drug product (tablets and capsules). Also, the final liquid nature of the formulation affects the handling and processability of the formulation, which poses challenges during the manufacturing and packaging steps. In this work, we have studied the feasibility of a single-step extrusion process to formulate and optimize solid self-emulsifying granules with a relatively higher drug loading of Ritonavir (RTV), a BCS Class IV drug. Further, we have compared the performance of using these granules as the feedstock for direct powder extrusion-based 3D printing as opposed to the use of physical blends. The stability and solubility-permeability advantage of these granules was also evaluated where SEDDS showed about 27 and 20 fold increase in apparent solublity and permeability compared to bulk drug, respectively. Combining the capabilities of HME to form drug-loaded homogeneous granules as a continuous process along with application of direct printing extruiosn (DPE) 3D printing improves the drug delivery prospects for such candidates.

2.
Mol Pharm ; 20(9): 4640-4653, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37606919

ABSTRACT

Tigecycline (TIG) is a broad-spectrum antibiotic that has been approved for the treatment of a number of complicated infections, including community-acquired bacterial pneumonia. Currently it is available only as an intravenous injection that undergoes rapid chemical degradation and limits the use to in-patient scenarios. The use of TIG as an inhaled dry powder inhaler may offer a promising treatment option for patients with multidrug-resistant respiratory tract infections, such as Stenotrophomonas maltophilia (S. maltophilia). This study explores the feasibility of engineering an inhaled powder formulation of TIG that could administer relevant doses at a wide range of inhalation flow rates while maintaining stability of this labile drug. Using air-jet milling, micronized TIG had excellent aerosolization efficiency, with over 80% of the device emitted dose being within the respirable range. TIG was also readily dispersed using different inhaler devices even when tested at different pressure drops and flow rates. Additionally, micronized TIG was stable for 6 months at 25 °C/60% RH and 40 °C/75% RH. Micronized TIG maintained a low minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of 0.8 µM and >0.5 µM, respectively in S. maltophilia cultures in vitro. These results strongly suggest that the micronization of TIG results in a stable and respirable formulation that can be delivered via the pulmonary route for the treatment of lung infections.


Subject(s)
Pneumonia , Humans , Tigecycline , Powders , Pneumonia/drug therapy , Anti-Bacterial Agents/pharmacology , Dry Powder Inhalers , Excipients
3.
Int J Pharm ; 636: 122789, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36868332

ABSTRACT

Buccal delivery of small and large molecules is an attractive route of administration that has been studied extensively over the past few decades. This route bypasses first-pass metabolism and can be used to deliver therapeutics directly to systemic circulation. Moreover, buccal films are efficient dosage forms for drug delivery due to their simplicity, portability, and patient comfort. Films have traditionally been formulated using conventional techniques, including hot-melt extrusion and solvent casting. However, newer methods are now being exploited to improve the delivery of small molecules and biologics. This review discusses recent advances in buccal film manufacturing, using the latest technologies, such as 2D and 3D printing, electrospraying, and electrospinning. This review also focuses on the excipients used in the preparation of these films, with emphasis on mucoadhesive polymers and plasticizers. Along with advances in manufacturing technology, newer analytical tools have also been used for the assessment of permeation of the active agents across the buccal mucosa, the most critical biological barrier and limiting factor of this route. Additionally, preclinical and clinical trial challenges are discussed, and some small molecule products already on the market are explored.


Subject(s)
Biological Products , Nanoparticles , Humans , Polymers , Administration, Buccal , Drug Delivery Systems/methods , Mouth Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL