Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 22(4): 497-509, 2021 04.
Article in English | MEDLINE | ID: mdl-33790474

ABSTRACT

Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism , ATP-Binding Cassette Transporters/metabolism , CD8-Positive T-Lymphocytes/immunology , Cross-Priming , Dendritic Cells/immunology , Histocompatibility Antigens Class I/immunology , Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , ATP-Binding Cassette Transporters/genetics , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Coculture Techniques , Dendritic Cells/metabolism , Dendritic Cells/virology , Disease Models, Animal , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Female , Golgi Apparatus/immunology , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Histocompatibility Antigens Class I/metabolism , Host-Pathogen Interactions , Humans , Influenza A virus/pathogenicity , Lymphocyte Activation , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/genetics
2.
Blood Cancer J ; 10(6): 65, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483120

ABSTRACT

Redirecting T cells to specifically kill malignant cells has been validated as an effective anti-cancer strategy in the clinic with the approval of blinatumomab for acute lymphoblastic leukemia. However, the immunosuppressive nature of the tumor microenvironment potentially poses a significant hurdle to T cell therapies. In hematological malignancies, the bone marrow (BM) niche is protective to leukemic stem cells and has minimized the efficacy of several anti-cancer drugs. In this study, we investigated the impact of the BM microenvironment on T cell redirection. Using bispecific antibodies targeting specific tumor antigens (CD123 and BCMA) and CD3, we observed that co-culture of acute myeloid leukemia or multiple myeloma cells with BM stromal cells protected tumor cells from bispecific antibody-T cell-mediated lysis in vitro and in vivo. Impaired CD3 redirection cytotoxicity was correlated with reduced T cell effector responses and cell-cell contact with stromal cells was implicated in reducing T cell activation and conferring protection of cancer cells. Finally, blocking the VLA4 adhesion pathway in combination with CD3 redirection reduced the stromal-mediated inhibition of cytotoxicity and T cell activation. Our results lend support to inhibiting VLA4 interactions along with administering CD3 redirection therapeutics as a novel combinatorial regimen for robust anti-cancer responses.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Bone Marrow/drug effects , CD3 Complex/immunology , Integrin alpha4beta1/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Multiple Myeloma/drug therapy , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , B-Cell Maturation Antigen/antagonists & inhibitors , B-Cell Maturation Antigen/immunology , Bone Marrow/immunology , Bone Marrow/pathology , CD3 Complex/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Integrin alpha4beta1/immunology , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/drug effects
3.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32150609

ABSTRACT

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , C2 Domains , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Macaca fascicularis , Sialic Acid Binding Ig-like Lectin 3/genetics , T-Lymphocytes/metabolism
4.
Cell ; 158(3): 506-21, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083866

ABSTRACT

Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.


Subject(s)
Antigen Presentation , Endosomes/metabolism , Phagosomes/metabolism , Toll-Like Receptors/metabolism , Animals , Dendritic Cells/immunology , Histocompatibility Antigens Class I/metabolism , Lymphoid Tissue , Mice , Ovalbumin/immunology , Phagocytosis , Phosphorylation , Protein Transport , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Toll-Like Receptors/immunology , rab GTP-Binding Proteins/metabolism
5.
Front Immunol ; 4: 401, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24319447

ABSTRACT

Cross-presentation involves the presentation of peptides derived from internalized cargo on major histocompatibility complex class I molecules by dendritic cells, a process critical for tolerance and immunity. Detailed studies of the pathways mediating cross-presentation have revealed that this process takes place in a specialized subcellular compartment with a unique set of proteins. In this review, we focus on the recently appreciated role for intracellular vesicular traffic, which serves to equip compartments such as endosomes and phagosomes with the necessary apparatus for conducting the various steps of cross-presentation. We also consider how these pathways may integrate with inflammatory signals particularly from pattern recognition receptors that detect the presence of microbial components during infection. We discuss the consequences of such signals on initiating cross-presentation to stimulate adaptive CD8 T cell responses.

SELECTION OF CITATIONS
SEARCH DETAIL