Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 182, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37434142

ABSTRACT

BACKGROUND: It has been demonstrated in the literature that a dysbiotic microbiome could have a negative impact on the host immune system and promote disease onset or exacerbation. Co-occurrence networks have been widely adopted to identify biomarkers and keystone taxa in the pathogenesis of microbiome-related diseases. Despite the promising results that network-driven approaches have led to in various human diseases, there is a dearth of research pertaining to key taxa that contribute to the pathogenesis of lung cancer. Therefore, our primary goal in this study is to explore co-existing relationships among members of the lung microbial community and any potential gained or lost interactions in lung cancer. RESULTS: Using integrative and network-based approaches, we integrated four studies assessing the microbiome of lung biopsies of cancer patients. Differential abundance analyses showed that several bacterial taxa are different between tumor and tumor-adjacent normal tissues (FDR adjusted p-value < 0.05). Four, fifteen, and twelve significantly different associations were found at phylum, family, and genus levels. Diversity analyses suggested reduced alpha diversity in the tumor microbiome. However, beta diversity analysis did not show any discernible pattern between groups. In addition, four distinct modules of bacterial families were detected by the DBSCAN clustering method. Finally, in the co-occurrence network context, Actinobacteria, Firmicutes, Bacteroidetes, and Chloroflexi at the phylum level and Bifidobacterium, Massilia, Sphingobacterium, and Ochrobactrum at the genus level showed the highest degree of rewiring. CONCLUSIONS: Despite the absence of statistically significant differences in the relative abundance of certain taxa between groups, it is imperative not to overlook them for further exploration. This is because they may hold pivotal central roles in the broader network of bacterial taxa (e.g., Bifidobacterium and Massilia). These findings emphasize the importance of a network analysis approach for studying the lung microbiome since it could facilitate identifying key microbial taxa in lung cancer pathogenesis. Relying exclusively on differentially abundant taxa may not be enough to fully grasp the complex interplay between lung cancer and the microbiome. Therefore, a network-based approach can offer deeper insights and a more comprehensive understanding of the underlying mechanisms.


Subject(s)
Actinobacteria , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Microbiota , Humans , Bifidobacterium , Lung
2.
BMC Microbiol ; 21(1): 315, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34763672

ABSTRACT

BACKGROUND: Although recent studies have indicated that imbalance in the respiratory microbiome composition is linked to several chronic respiratory diseases, the association between the lung microbiome and lung cancer has not been extensively studied. Conflicting reports of individual studies on respiratory microbiome alterations in lung cancer complicate the matter for specifying how the lung microbiome is linked to lung cancer. Consequently, as the first meta-analysis on this topic, we integrate publicly available 16S rRNA gene sequence data on lung tissue samples of lung cancer patients to identify bacterial taxa which differ consistently between case and control groups. RESULTS: The findings of the current study suggest that the relative abundance of several bacterial taxa including Actinobacteria phylum, Corynebacteriaceae and Halomonadaceae families, and Corynebacterium, Lachnoanaerobaculum, and Halomonas genera is significantly decreased (p < 0.05) in lung tumor tissues of lung cancer patients in comparison with tumor-adjacent normal tissues. CONCLUSIONS: Despite the underlying need for scrutinizing the findings further, the present study lays the groundwork for future research and adds to our limited understanding of the key role of the lung microbiome and its complex interaction with lung cancer. More data on demographic factors and tumor tissue types would help establish a greater degree of accuracy in characterizing the lung microbial community which accords with subtypes and stages of the disease and fully capturing the changes of the lung microbiome in lung cancer.


Subject(s)
Bacteria/isolation & purification , Lung Neoplasms/microbiology , Lung/microbiology , Microbiota , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , DNA, Bacterial/genetics , Female , Humans , Male , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...