Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36838018

ABSTRACT

Fabrication of micro- and nanofibers are critical for a wide range of applications from microelectronics to biotechnology. Alginate microfibers with diameters of tens to hundreds of microns play an important role in tissue engineering and fibers of these diameters are impossible to fabricate via electrospinning and can only be produced via fluidic spinning. Typically, microfluidic spinning based on photopolymerization produces fibers that are not easily dissolvable, while fluidic spinning with chemical cross-linking employs complex setups of microfabricated chips or coaxial needles, aimed at precise control of the fiber diameter; however, fluidic spinning introduces significant cost and complexity to the microfluidic setup. We demonstrate immersed microfluidic spinning where a calcium alginate microfiber is produced via displacement of alginate solution through a single needle that is immersed in a cross-linking bath of calcium chloride solution. The resulting diameter of the fiber is characterized and the fiber diameter and topology of the deposited fiber is related to the concentration of the alginate solution (2 wt%, 4 wt%, and 6 wt%), needle gauge (30 g, 25 g, and 20 g), and the volumetric flow rate of the alginate solution (1 mL/min, 2 mL/min, and 2.7 mL/min). The resulting fiber diameter is smaller than the internal diameter of the needle and this dependence is explained by the continuity of the flow and increased rate of fall of the liquid jet upon its issuing from the needle. The fiber diameter (demonstrated diameter of fibers range from 100 microns to 1 mm) depends weakly on the volumetric flow rate and depends strongly on the needle diameter. It also seems that for a smaller needle size, a greater concentration of alginate results in smaller diameter fibers and that this trend is not evident as the needle diameter is increased. In terms of topology of the deposited fiber, the higher wt% alginate fiber produces larger loops, while smaller wt% alginate solution yields a denser topology of the overlaid fiber loops. These fibers can be dissolved in DMEM/EDTA/DSC solution in 20-30 min (depending on the fiber diameter), leaving behind the hollow channels in the hydrogel matrix. We believe that the demonstrated simple setup of the immersed microfluidic spinning of the calcium alginate microfibers will be useful for creating tissue constructs, including the vascularized tissue implants.

2.
Front Immunol ; 13: 890517, 2022.
Article in English | MEDLINE | ID: mdl-35711466

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated symptoms, named coronavirus disease 2019 (COVID-19), have rapidly spread worldwide, resulting in the declaration of a pandemic. When several countries began enacting quarantine and lockdown policies, the pandemic as it is now known truly began. While most patients have minimal symptoms, approximately 20% of verified subjects are suffering from serious medical consequences. Co-existing diseases, such as cardiovascular disease, cancer, diabetes, and others, have been shown to make patients more vulnerable to severe outcomes from COVID-19 by modulating host-viral interactions and immune responses, causing severe infection and mortality. In this review, we outline the putative signaling pathways at the interface of COVID-19 and several diseases, emphasizing the clinical and molecular implications of concurring diseases in COVID-19 clinical outcomes. As evidence is limited on co-existing diseases and COVID-19, most findings are preliminary, and further research is required for optimal management of patients with comorbidities.


Subject(s)
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics , Quarantine , SARS-CoV-2
3.
Cancer Med ; 11(7): 1630-1645, 2022 04.
Article in English | MEDLINE | ID: mdl-35224879

ABSTRACT

BACKGROUND: Cancer diagnostic probe (CDP) had been developed to detect involved breast cavity side margins in real-time (Miripour et al. Bioeng Transl Med. e10236.). Here, we presented the results of the in vivo human model CDP studies on non-neoadjuvant cases. METHODS: This study is a prospective, blind comparison to a gold standard, and the medical group recruited patients. CDP and frozen data were achieved before the permanent pathology experiment. The main outcome of the study is surgical margin status. From November 2018 to April 2020, 202 patients were registered, and 188 were assigned for the study. Breast-conserving surgery at any age or gender, re-surgery due to re-currency, or involved margins are acceptable. Patients must be non-neoadjuvant. The reliability of CDP scoring had been evaluated by the pathology of the scored IMs. Then, three models of the study were designed to compare CDP with the frozen sections. Receiver operating characteristic (ROC) curves and AUC were measured based on the permanent postoperative pathology gold standard. RESULTS: A matched clinical diagnostic categorization between the pathological results of the tested IMs and response peaks of CDP on 113 cases, was reported (sensitivity = 97%, specificity = 89.3%, accuracy = 92%, positive predictive value (PPV) = 84.2%, and negative predictive value (NPV) = 98%). Study A showed the independent ability of CDP for IM scoring (sensitivity = 80%, specificity = 90%, accuracy = 90%, PPV = 22.2%, and NPV = 99.2%). Study B showed the complementary role of CDP to cover the missed lesions of frozen sections (sensitivity = 93.8%, specificity = 91%, accuracy = 91%, PPV = 55.6%, and NPV = 99.2%). Study C showed the ability of CDP in helping the pathologist to reduce his/her frozen miss judgment (specificity = 92%, accuracy = 93%, PPV = 42.1%, and NPV = 100%). Results were reported based on the post-surgical permanent pathology gold standard. CONCLUSION: CDP scoring ability in intra-operative margin detection was verified on non-neoadjuvant breast cancer patients. Non-invasive real-time diagnosis of IMs with pathological values may make CDP a distinct tool with handheld equipment to increase the prognosis of breast cancer patients.


Subject(s)
Breast Neoplasms , Margins of Excision , Female , Humans , Male , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Glycolysis , Hypoxia , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
4.
Bioeng Transl Med ; 7(1): e10236, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35079624

ABSTRACT

For most people, the first step in treatment is to take out the tumor (surgery), so precise and fast diagnosis of any sign of high-risk and neoplastic cells, especially in surgical cavity margins, is significant. The frozen pathology method is the conventional standard of intraoperative diagnosis, but the low number of slides prepared from non-fixed tissues prevents us from achieving a perfect diagnosis. Although many improvements in intraoperative margin detection were achieved, still real-time detection of neoplastic lesions is crucial to improving diagnostic quality. Functionalized carbon nanotubes grown on the electrode needles lively and selectively determine the H2O2 released from cancer/atypical cells through reverse Warburg effect and hypoxia assisted glycolysis pathways in a quantitative electrochemical manner. The study was carried out on cell lines, 57 in vivo mice models with breast cancer, and 258 fresh in vitro samples of breast cancer tumors. A real-time electrotechnical system, named cancer diagnostic probe (CDP) (US Patent Pub. No.: US 2018/02991 A1, US 2021/0007638 A1, and US 2021/0022650 A1 [publications], and US 10,786,188 B1 [granted]), has been developed to find pre-neoplastic/neoplastic cells in vivo in a quantitative electrochemical manner by tracing hypoxia glycolysis byproducts. Matched pathological evaluations with response peaks of CDP were found based on the presence of neoplasia (from atypia to invasive carcinoma) in live breast tissues. The ability of CDP to find neoplastic lesions in mice models in vivo and fresh breast tumors in vitro was verified with sensitivity and specificity of 95% and 97%, respectively. The system may help a surgeon assistant system for usage in the operating room after passing many trials and standard examinations in the future.

5.
Cancer Med ; 10(21): 7475-7491, 2021 11.
Article in English | MEDLINE | ID: mdl-34626092

ABSTRACT

BACKGROUND: We discovered that pure positive electrostatic charges (PECs) have an intrinsic suppressive effect on the proliferation and metabolism of invasive cancer cells (cell lines and animal models) without affecting normal tissues. METHODS: We interacted normal and cancer cell lines and animal tumors with PECs by connecting a charged patch to cancer cells and animal tumors. many biochemical, molecular and radiological assays were carried out on PEC treated and control samples. RESULTS: Correlative interactions between electrostatic charges and cancer cells contain critical unknown factors that influence cancer diagnosis and treatment. Different types of cell analyses prove PEC-based apoptosis induction in malignant cell lines. Flowcytometry and viability assay depict selective destructive effects of PEC on malignant breast cancer cells. Additionally, strong patterns of pyknotic apoptosis, as well as downregulation of proliferative-associated proteins (Ki67, CD31, and HIF-1α), were observed in histopathological and immunohistochemical patterns of treated mouse malignant tumors, respectively. Quantitative real-time polymerase chain reaction results demonstrate up/down-regulated apoptotic/proliferative transcriptomes (P21, P27, P53/CD34, integrin α5, vascular endothelial growth factor, and vascular endothelial growth factor receptor) in treated animal tumors. Expression of propidium iodide in confocal microscopy images of treated malignant tissues was another indication of the destructive effects of PECs on such cells. Significant tumor size reduction and prognosis improvement were seen in over 95% of treated mouse models with no adverse effects on normal tissues. CONCLUSION: We discovered that pure positive electrostatic charges (PECs) have an intrinsic suppressive effect on the proliferation and metabolism of invasive cancer cells (cell lines and animal models) without affecting normal tissues. The findings were statistically and observationally significant when compared to radio/chemotherapy-treated mouse models. As a result, this nonionizing radiation may be used as a practical complementary approach with no discernible side effects after passing future human model studies.


Subject(s)
Cell Proliferation , Neoplasm Metastasis/pathology , Neoplasm Metastasis/therapy , Static Electricity , Animals , Apoptosis , Cell Line, Tumor , Disease Models, Animal , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/radiotherapy , Necrosis , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL
...