Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Viruses ; 16(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38543692

ABSTRACT

Infectious bronchitis virus (IBV) induces severe economic losses in chicken farms due to the emergence of new variants leading to vaccine breaks. The studied IBV strains belong to Massachusetts (Mass), Canadian 4/91, and California (Cal) 1737 genotypes that are prevalent globally. This study was designed to compare the impact of these three IBV genotypes on primary and secondary lymphoid organs. For this purpose, one-week-old specific pathogen-free chickens were inoculated with Mass, Canadian 4/91, or Cal 1737 IBV variants, keeping a mock-infected control. We examined the IBV replication in primary and secondary lymphoid organs. The molecular, histopathological, and immunohistochemical examinations revealed significant differences in lesion scores and viral distribution in these immune organs. In addition, we observed B-cell depletion in the bursa of Fabricius and the spleen with a significant elevation of T cells in these organs. Further studies are required to determine the functional consequences of IBV replication in lymphoid organs.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Canada , Chickens , Infectious bronchitis virus/genetics , California , Genotype , Massachusetts
2.
Front Vet Sci ; 11: 1338563, 2024.
Article in English | MEDLINE | ID: mdl-38482170

ABSTRACT

Infectious bronchitis virus (IBV) is a respiratory virus causing atropism in multiple body systems of chickens. Recently, the California 1737/04 (CA1737/04) IBV strain was identified as one of the circulating IBV variants among poultry operations in North America. Here, the pathogenicity and tissue tropism of CA1737/04 IBV strain in specific-pathogen-free (SPF) hens were characterized in comparison to Massachusetts (Mass) IBV. In 30 weeks-old SPF hens, Mass or CA1737/04 IBV infections were carried out, while the third group was maintained as a control group. Following infection, we evaluated clinical signs, egg production, viral shedding, serology, necropsy examination, and histopathology during a period of 19 days. Also, certain tissue affinity parameters were investigated, which involved the localization of viral antigens and the detection of viral RNA copies in designated tissues. Our findings indicate that infection with CA1737/04 or Mass IBV strain could induce significant clinical signs, reduced egg production, and anti-IBV antibodies locally in oviduct wash and systemically in serum. Both IBV strains showed detectable levels of viral RNA copies and induced pathology in respiratory, renal, enteric, and reproductive tissues. However, the CA1737/04 IBV strain had higher pathogenicity, higher tissue tropism, and higher replication in the kidney, large intestine, and different segments of the oviduct compared to the Mass IBV strain. Both IBV strains shed viral genome from the cloacal route, however, the Mass IBV infected hens shed higher IBV genome loads via the oropharyngeal route compared to CA1737/04 IBV-infected hens. Overall, the current findings could contribute to a better understanding of CA1737/04 IBV pathogenicity in laying hens.

3.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38189432

ABSTRACT

Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.


Subject(s)
Dinoprostone , Infectious bronchitis virus , Animals , Cyclooxygenase 2/genetics , Interleukin-6/genetics , Chickens
4.
J Virol Methods ; 324: 114859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061673

ABSTRACT

The quantitative polymerase chain reaction (qPCR) technique is an extensively used molecular tool for the detection and quantification of viral genome load. However, since the qPCR assay is a relative quantification method that relies on an external calibration curve it has a lower assay precision and sensitivity. The digital PCR (dPCR) technique is a good alternative to the qPCR assay as it offers highly precise and direct quantification of viral genome load in samples. In this study, performance characteristics such as the quantification range, sensitivity, precision, and specificity of the dPCR technique was compared to qPCR technique for the detection and quantification of IBV genome loads in serial dilutions of IBV positive plasmid DNA, and IBV infected chicken tissue and swab samples. The quantification range of the qPCR assay was wider than that of the dPCR assay, however dPCR had a higher sensitivity compared to qPCR. The precision of quantification of DNA in plasmid samples in terms of repeatability and reproducibility of results was higher when using the dPCR assay compared to qPCR assay. The quantification results of IBV genome load in infected samples by the qPCR and dPCR assays displayed a high correlation. Hence, our findings suggest that dPCR could be used in avian virology research for improved precision and sensitivity in detection and quantification of viral genome loads.


Subject(s)
Infectious bronchitis virus , Animals , Infectious bronchitis virus/genetics , Reproducibility of Results , DNA , Chickens , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods
5.
Virus Res ; 339: 199281, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37995965

ABSTRACT

The emergence of the Canadian Delmarva (DMV)/1639 infectious bronchitis virus (IBV) type strains was associated with egg production disorders in Eastern Canadian layer operations. While developing vaccines for novel IBV variants is not typically a reasonable approach, the consideration of an autogenous vaccine becomes more appealing, particularly when the new variant presents significant economic challenges. The current study aimed to compare the efficacies of two vaccination programs that included heterologous live priming by Massachusetts (Mass) and Connecticut (Conn) type vaccines followed by either a commercial inactivated Mass type vaccine or a locally prepared autogenous inactivated DMV/1639 type vaccine against DMV/1639 IBV challenge. The protection parameters evaluated were egg production, viral shedding, dissemination of the virus in tissues, gross and microscopic lesions, and immunological responses. The challenge with the DMV/1639 caused severe consequences in the non-vaccinated laying hens including significant drop in egg production, production of low-quality eggs, serious damage to the reproductive organs, and yolk peritonitis. The two vaccination programs protected the layers from the poor egg-laying performance and the pathology. The vaccination program incorporating the autogenous inactivated DMV/1639 type vaccine was more effective in reducing vial loads in renal and reproductive tissues. This was associated with a higher virus neutralization titer compared to the group that received the commercial inactivated Mass type vaccine. Additionally, the autogenous vaccine boost led to a significant reduction in the viral shedding compared to the non-vaccinated laying hens. However, both vaccination programs induced significant level of protection considering all parameters examined. Overall, the findings from this study underscore the significance of IBV vaccination for protecting laying hens.


Subject(s)
Autovaccines , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Female , Chickens , Vaccines, Inactivated , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Canada , Vaccines, Attenuated
6.
Viruses ; 15(12)2023 11 22.
Article in English | MEDLINE | ID: mdl-38140526

ABSTRACT

Infectious bronchitis virus (IBV) is an avian coronavirus that causes a disease in chickens known as infectious bronchitis (IB). The pathogenesis of IBV and the host immune responses against it depend on multiple factors such as the IBV variant, breed and age of the chicken, and the environment provided by the management. Since there is limited knowledge about the influence of the sex of chickens in the pathogenesis of IBV, in this study we aim to compare IBV pathogenesis and host immune responses in young male and female chickens. One-week-old specific pathogen-free (SPF) White Leghorn male and female chickens were infected with Canadian Delmarva (DMV)/1639 IBV variant at a dose of 1 × 106 embryo infectious dose (EID)50 by the oculo-nasal route while maintaining uninfected controls, and these chickens were euthanized and sampled 4- and 11-days post-infection (dpi). No significant difference was observed between the infected male and female chickens in IBV shedding, IBV genome load in the trachea, lung, kidney, bursa of Fabricius (BF), thymus, spleen, and cecal tonsils (CT), and IBV-induced lesion in all the examined tissues at both 4 and 11 dpi. In addition, there was no significant difference in the percentage of IBV immune-positive area observed between the infected male and female chickens in all tissues except for the kidney, which expressed an increased level of IBV antigen in infected males compared with females at both 4 and 11 dpi. The percentage of B lymphocytes was not significantly different between infected male and female chickens in all the examined tissues. The percentage of CD8+ T cells was not significantly different between infected male and female chickens in all the examined tissues except in the trachea at 11 dpi, where female chickens had higher recruitment when compared with male chickens. Overall, although most of the findings of this study suggest that the sex of chickens does not play a significant role in the pathogenesis of IBV and the host immune response in young chickens, marginal differences in viral replication and host responses could be observed to indicate that IBV-induced infection in male chickens is more severe.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Male , Female , Chickens , Infectious bronchitis virus/physiology , Canada , Trachea , Immunity
7.
Virology ; 587: 109852, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531823

ABSTRACT

Infectious bronchitis virus (IBV) that primarily causes respiratory infection in chickens, disseminate to multiple body systems leading to pathology, results in economic losses to poultry industry. IBV replicates in the bursa of Fabricius (BF), Harderian gland (HG), cecal tonsils (CT), and spleen. The objective of this study was to investigate the immunosuppressive effect of IBV Delmarva (DMV/1639) variant in chickens. Specific pathogen free chickens were infected with the IBV DMV/1639 variant while maintaining an age-matched uninfected control group. At predetermined time points, subsets of the infected and control chickens were observed for changes in body weights and pathological changes. The histopathological lesions were observed in the CT and BF, with minimal lesions in the thymus and spleen. The mRNA expression of pro-inflammatory mediators suggested immunomodulation by IBV, favoring viral replication. Further studies are warranted to observe the functional impact of the IBV DMV/1639 variant's replication in immune organs.

8.
Vaccines (Basel) ; 11(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37515032

ABSTRACT

Infectious bronchitis virus (IBV) causes infectious bronchitis disease in chickens. IBV primarily infects the upper respiratory tract and then disseminates to other body systems including gastrointestinal, reproductive, and urinary systems. Unlike original IBV serotypes, the novel IBV variants target lymphoid organs, but information on this is scarce. In this study, we aim to evaluate the impact of the presence of maternal antibodies on IBV infection in primary and secondary lymphoid organs. Maternal antibody free, specific pathogen free (SPF) hens were divided into vaccinated and non-vaccinated groups. The progeny male chicks from these hens were divided into four groups; vaccinated challenged (VC), non-vaccinated challenged (NVC), vaccinated non-challenged (VNC), and non-vaccinated non-challenged (NVNC). The challenge groups were given 1 × 106 embryo infectious dose (EID)50 of IBV Delmarva (DMV)/1639 by the oculo-nasal route and non-challenge groups were given saline. The serum anti-IBV antibody titer was significantly higher in challenged groups compared to non-challenged groups. The IBV genome load was significantly lower in the VC group than NVC group in oropharyngeal and cloacal swabs and in bursa of Fabricius (BF) and cecal tonsils (CT). The histopathological lesion scores were significantly lower in VC group than NVC group in BF and CT. These findings suggest that the presence of maternal antibody in chicks could provide some degree of protection against IBV infection in BF and CT.

9.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36851216

ABSTRACT

Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.

10.
Front Vet Sci ; 10: 1329430, 2023.
Article in English | MEDLINE | ID: mdl-38313768

ABSTRACT

Infectious bronchitis (IB) is a highly contagious and acute viral disease of chicken caused by the infectious bronchitis virus (IBV) of the family Coronaviridae. Even with extensive vaccination against IB by the poultry industry, the occurrence of new IBV genotypes is a continuous challenge encountered by the global poultry industry. This experiment was designed to compare the pathogenicity of two IBV strains belonging to Massachusetts (Mass) and Delmarva DMV/1639 genotypes. Specific pathogen-free laying hens were challenged during the peak of production (30 weeks), keeping a mock-infected control group. During 21 days of observation following infection, a significant drop in egg production with miss-shaped and soft shells was observed in the DMV/1639 IBV-infected hens only. The DMV/1639 IBV infected group showed prolonged and higher cloacal viral shedding compared with the Mass IBV-infected group. At the end of the study (21 days post-infection), the viral genome loads in the respiratory, urogenital, and immune tissues were significantly higher in the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Macroscopic lesions such as distorted ova leading to egg peritonitis were observed only in the DMV/1639 IBV-infected group. Moreover, microscopic lesion scores were significantly higher in the lung, kidney, cecal tonsils, and oviduct of the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Finally, the apoptosis index in the kidney, ovary, magnum, isthmus, and shell gland was significantly higher in the DMV/1639 IBV-infected group compared with the control and Mass-infected groups. This study examined the pathogenicity of two IBV genotypes that are impacting the layer industry in North America.

11.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36016082

ABSTRACT

Vaccination is the most important way to control infectious bronchitis (IB) in chickens. Since the end of 2015, the Delmarva (DMV)/1639 strain of infectious bronchitis virus (IBV) has caused significant damage to the layer flocks in Eastern Canada. The efficacy of a combination of existing IB vaccines licensed in Canada was assessed against experimental challenge with this IBV strain. The layer pullets were vaccinated during the rearing phase with live attenuated IB vaccines of Massachusetts (Mass) + Connecticut (Conn) types followed by an inactivated IB vaccine of Mass + Arkansas (Ark) types and then challenged with the Canadian IBV DMV/1639 strain at 30 weeks of age. Protection was evaluated based on the egg laying performance, immune responses, viral shedding, and viral genome loads and lesions in IBV target organs. The vaccinated challenged hens were protected from the drop in egg production observed in the non-vaccinated challenged hens. Early (5 dpi) anamnestic serum antibody response was measured in the vaccinated challenged hens as well as a significant level of antibodies was detected in the oviduct washes (14 dpi). In contrast, hens in the non-vaccinated challenged group showed delayed (12 dpi) and significantly lower serum antibody response. Viral RNA loads were reduced in the respiratory, alimentary, and reproductive tissues of the vaccinated challenged hens compared to the non-vaccinated challenged hens. Compared to the control groups, the vaccinated challenged hens had less marked microscopic lesions in the trachea, kidney, magnum, and uterus. Our experimental model demonstrated inconclusive results for cell-mediated immune responses and viral shedding. Overall, the vaccination program used in this study minimized viral replication and histopathological changes in most IBV target organs and protected challenged hens against drop in egg production.

12.
Vaccines (Basel) ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35632538

ABSTRACT

Infectious laryngotracheitis (ILT) is caused by Gallid herpesvirus-1 (GaHV-1) or infectious laryngotracheitis virus (ILTV) and was first described in Canadian poultry flocks. In Canada, ILTV infection is endemic in backyard flocks, and commercial poultry encounters ILT outbreaks sporadically. A common practice to control ILT is the use of live attenuated vaccines. However, outbreaks still occur in poultry flocks globally due to ILTV vaccine strains reverting to virulence and emergence of new ILTV strains due to recombination in addition to circulating wildtype strains. Recent studies reported that most of the ILT outbreaks in Canada were induced by the chicken-embryo-origin (CEO) live attenuated vaccine revertant strains with the involvement of a small percentage of wildtype ILTV. It is not known if the host responses induced by these two ILTV strains are different. The objective of the study was to compare the host responses elicited by CEO revertant and wildtype ILTV strains in chickens. We infected 3-week-old specific pathogen-free chickens with the two types of ILTV isolates and subsequently evaluated the severity of clinical and pathological manifestations, in addition to host responses. We observed that both of the isolates show high pathogenicity by inducing several clinical and pathological manifestations. A significant recruitment of immune cells at both 3 and 7 days post-infection (dpi) was observed in the tracheal mucosa and the lung tissues of the infected chickens with wildtype and CEO vaccine revertant ILTV isolates when compared to uninfected controls. Overall, this study provides a better understanding of the mechanism of host responses against ILTV infection.

13.
Microb Pathog ; 166: 105513, 2022 May.
Article in English | MEDLINE | ID: mdl-35378244

ABSTRACT

IBV infection may lead to reduced egg production and poor egg quality in layer flocks. The DMV/1639 strain was recently identified as one of the most dominant IBV variants isolated from Canadian layer flocks with egg production problems. The current study aimed to investigate the immunopathogenesis of the Canadian DMV/1639 strain in laying chickens. Specific-pathogen-free (SPF) layers were infected at the peak of lay (29 weeks; n = 10) with an uninfected control group (n = 10). Egg production in the infected group dropped to 40% by the fifth day post-infection (dpi). Five birds from the infected and the control groups were euthanized at 5 and 10 dpi. Ovarian regression and shortened oviduct with marked histopathological changes were observed in the infected group at 10 dpi. An increase in the IBV viral load in reproductive tissues was accompanied by a significant recruitment (p < 0.05) of KUL01+ macrophages and CD4+ and CD8+ T cell subsets at 10 dpi. Additionally, anti-IBV antibody response was detected in serum and locally in the reproductive tract washes of the infected group. Overall, our findings contribute to the understanding of the pathogenicity of the Canadian DMV/1639 strain and the subsequent host responses in the reproductive tract of chickens.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Canada , Chickens/virology , Coronavirus Infections/veterinary , Poultry Diseases/virology
14.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34960175

ABSTRACT

In Alberta, infectious laryngotracheitis virus (ILTV) infection is endemic in backyard poultry flocks; however, outbreaks are only sporadically observed in commercial flocks. In addition to ILTV vaccine revertant strains, wild-type strains are among the most common causes of infectious laryngotracheitis (ILT). Given the surge in live attenuated vaccine-related outbreaks, the goal of this study was to assess the efficacy of a recombinant herpesvirus of turkey (rHVT-LT) vaccine against a genotype VI Canadian wild-type ILTV infection. One-day-old specific pathogen-free (SPF) White Leghorn chickens were vaccinated with the rHVT-LT vaccine or mock vaccinated. At three weeks of age, half of the vaccinated and the mock-vaccinated animals were challenged. Throughout the experiment, weights were recorded, and feather tips, cloacal and oropharyngeal swabs were collected for ILTV genome quantification. Blood was collected to isolate peripheral blood mononuclear cells (PBMC) and quantify CD4+ and CD8+ T cells. At 14 dpi, the chickens were euthanized, and respiratory tissues were collected to quantify genome loads and histological examination. Results showed that the vaccine failed to decrease the clinical signs at 6 days post-infection. However, it was able to significantly reduce ILTV shedding through the oropharyngeal route. Overall, rHVT-LT produced a partial protection against genotype VI ILTV infection.

15.
Vaccines (Basel) ; 9(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065415

ABSTRACT

For decades, vaccinations have been used to limit infectious bronchitis (IB) in both the broiler and layer industries. Depending on the geographical area, live attenuated vaccines are used either alone or in combination with inactivated vaccines to control infectious bronchitis virus (IBV) infections. It has been shown that administering inactivated vaccines preceded by priming with live attenuated vaccines in pullets protects laying hens against IB. However, the immunological basis of this protective response has not been adequately investigated. The objective of the study was to compare two vaccination strategies adapted by the Canadian poultry industry in terms of their ability to systemically induce an adequate immune response in IBV-impacted tissues in laying hens. The first vaccination strategy (only live attenuated IB vaccines) and second vaccination strategy (live attenuated and inactivated IB vaccines) were applied. Serum anti-IBV antibodies were measured at two time points, i.e., 3 weeks and 10 weeks post last vaccination. The recruitment of T cell subsets (i.e., CD4+ and CD8+ T cells), and the interferon (IFN)-γ mRNA expression were measured at 10 weeks post last vaccination. We observed that vaccination strategy 2 induced significantly higher serum anti-IBV antibody responses that were capable of neutralizing an IBV Mass variant associated with a flock history of shell-less egg production better than a Delmarva (DMV)1639 variant, as well as a significantly higher IFN-γ mRNA expression in the lungs, kidneys, and oviduct. We also observed that both vaccination strategies recruited CD4+ T cells as well as CD8+ T cells to the examined tissues at various extents. Our findings indicate that vaccination strategy 2 induces better systemic and local host responses in laying hens.

16.
Pathogens ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069486

ABSTRACT

Infectious bronchitis virus (IBV) initially establishes the infection in the respiratory tract and then spreads to other tissues depending on its virulence. During 2011-2018, the 4/91 IBV strain was isolated from poultry flocks affected by decreased egg production and quality in Eastern Canada. One of the Canadian 4/91 IBV isolates, IBV/Ck/Can/17-038913, was propagated in embryonated chicken eggs and molecularly characterized using whole genome sequencing. An in vivo study in laying hens was conducted to observe if IBV/Ck/Can/17-038913 isolate affects the egg production and quality. Hens were infected with IBV/Ck/Can/17-038913 isolate during the peak of egg lay, using a standard dose and routes maintaining uninfected controls. Oropharyngeal and cloacal swabs were collected at predetermined time points for the quantification of IBV genome loads. At 6 and 10 days post-infection, hens were euthanized to observe the lesions in various organs and collect blood and tissue samples for the quantification of antibody response and IBV genome loads, respectively. Egg production was not impacted during the first 10 days following infection. No gross lesions were observed in the tissues of the infected birds. The IBV genome was quantified in swabs, trachea, lung, proventriculus, cecal tonsils, kidney, and reproductive tissues. The serum antibody response against IBV was quantified in infected hens. In addition, histological changes, and recruitment of immune cells, such as macrophages and T cell subsets in kidney tissues, were measured. Overall, data show that IBV/Ck/Can/17-038913 isolate is not associated with egg production issues in laying hens infected at the peak of lay, while it demonstrates various tissue tropism, including kidney, where histopathological lesions and immune cell recruitments were evident.

17.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33805117

ABSTRACT

Infectious laryngotracheitis (ILT) is an infectious upper respiratory tract disease that impacts the poultry industry worldwide. ILT is caused by an alphaherpesvirus commonly referred to as infectious laryngotracheitis virus (ILTV). Vaccination with live attenuated vaccines is practiced regularly for the control of ILT. However, extensive and improper use of live attenuated vaccines is related to vaccine viruses reverting to virulence. An increase in mortality and pathogenicity has been attributed to these vaccine revertant viruses. Recent studies characterized Canadian ILTV strains originating from ILT outbreaks as related to live attenuated vaccine virus revertants. However, information is scarce on the pathogenicity and transmission potential of these Canadian isolates. Hence, in this study, the pathogenicity and transmission potential of two wildtype ILTVs and a chicken embryo origin (CEO) vaccine revertant ILTV of Canadian origin were evaluated. To this end, 3-week-old specific pathogen-free chickens were experimentally infected with each of the ILTV isolates and compared to uninfected controls. Additionally, naïve chickens were exposed to the experimentally infected chickens to mimic naturally occurring infection. Pathogenicity of each of these ILTV isolates was evaluated by the severity of clinical signs, weight loss, mortality, and lesions observed at the necropsy. The transmission potential was evaluated by quantification of ILTV genome loads in oropharyngeal and cloacal swabs and tissue samples of the experimentally infected and contact-exposed chickens, as well as in the capacity to produce ILT in contact-exposed chickens. We observed that the CEO vaccine revertant ILTV isolate induced severe disease in comparison to the two wildtype ILTV isolates used in this study. According to ILTV genome load data, CEO vaccine revertant ILTV isolate was successfully transmitted to naïve contact-exposed chickens in comparison to the tested wildtype ILTV isolates. Overall, the Canadian origin CEO vaccine revertant ILTV isolate possesses higher virulence, and dissemination potential, when compared to the wildtype ILTV isolates used in this study. These findings have serious implications in ILT control in chickens.


Subject(s)
Herpesviridae Infections/transmission , Herpesviridae Infections/veterinary , Herpesvirus 1, Gallid/genetics , Herpesvirus 1, Gallid/pathogenicity , Poultry Diseases/transmission , Viral Vaccines/analysis , Animals , Canada , Cells, Cultured , Chick Embryo , Chickens/virology , Disease Outbreaks , Herpesviridae Infections/virology , Herpesvirus 1, Gallid/isolation & purification , Liver/cytology , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Vaccines, Attenuated/analysis , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...