Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(49): 46804-46815, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107938

ABSTRACT

Here, we explore a catalyst-free single-step growth strategy that results in high-quality self-assembled single-crystal vertical GaN nanowires (NWs) grown on a wide range of common and novel substrates (including GaN, Ga2O3, and monolayer two-dimensional (2D) transition-metal dichalcogenide (TMD)) within the same chamber and thus under identical conditions by pulsed laser deposition. High-resolution transmission electron microscopy and scanning transmission electron microscopy (HR-STEM) and grazing incidence X-ray diffraction measurements confirm the single-crystalline nature of the obtained NWs, whereas advanced optical and cathodoluminescence measurements provide evidence of their high optical quality. Further analyses reveal that the growth is initiated by an in situ polycrystalline layer formed between the NWs and substrates during growth, while as its thickness increases, the growth mode transforms into single-crystalline NW nucleation. HR-STEM and corresponding energy-dispersive X-ray compositional analyses indicate possible growth mechanisms. All samples exhibit strong band edge UV emission (with a negligible defect band) dominated by radiative recombination with a high optical efficiency (∼65%). As all NWs have similar structural and optical qualities irrespective of the substrate used, this strategy will open new horizons for developing III-nitride-based devices.

2.
Sci Rep ; 13(1): 19332, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935747

ABSTRACT

We report the growth of N-polar InGaN layers on misoriented ScAlMgO4 (SAM) substrates with offset of 0.3 to 5.8° toward the m-plane. The surface of N-polar InGaN with small-offset substrates exhibited hexagonal hillocks similar to those commonly observed in N-polar GaN layers. Larger misorientation angles resulted in smoother surfaces of the InGaN layers. In contrast, the crystalline quality of InGaN indicated an opposite trend with significantly improved quality observed at smaller misorientation angles. We obtained an unprecedented crystalline quality of N-polar InGaN using SAM substrates with a 0.5° offset, which exhibited a [Formula: see text] X-ray rocking curve full width at half maximum value of 223 arcsec. The crystalline quality and surface morphology of InGaN were significantly influenced by the step surface of substrates according to atomic force microscopy observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...