Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063751

ABSTRACT

Fly ash microspheres, also called cenospheres, have many valuable properties that allow them to be widely used. Some of its most important properties are its mechanical and thermal strength as well as its chemical stability. These features constitute an important commercial parameter. Refining processes aim to select the highest quality product from raw materials that meets the expectations of recipients. Generally, preparing a final product involves selecting the appropriate sequence and parameters of the grain separation process. However, the key to the optimal selection of these parameters is knowledge of the specificity of the processed raw material. Microspheres are materials that are created spontaneously, uncontrolled, and without the possibility of intentionally influencing their properties. Therefore, due to the potential directions of microsphere use, it is justified to study the relationship between density, grain size, and mechanical strength. Understanding these relationships in microspheres from various sources is particularly important at the stage of planning refining processes. This paper presents the results of research on microspheres from two different sources. The tested raw materials (microspheres) are subjected to densiometric and grain analysis. Also, mechanical strength was determined for the separated density fractions and grain classes. The test results did not show significant correlations between the tested features of the microspheres. In the case of both raw materials, the highest density was observed in the smallest grain classes, and the highest mechanical strength was determined for microspheres with grain sizes in the range of 75-100 µm. For this grain size range, the value of mechanical strength is 26 for raw Material 1 and 38 for raw Material 2. The shares of this grain fraction in the microsphere stream are 11.2% and 16%, respectively. An important difference that may significantly affect the efficiency of the refining process is the method of distribution of the primary falling parts, which affects the mechanical strength of the tested raw materials.

2.
Heliyon ; 10(9): e30058, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707407

ABSTRACT

A concept has been proposed for an installation designed to store excess electricity periodically occurring on the grid. Excess electricity will be used for straw pyrolysis. The main pyrolysis product, gas, will be used to generate electricity using a combustion generator to feed back power into the grid during periods of shortage. The resulting biochar from the pyrolysis can be introduced into the soil to improve soil quality and play a significant role in carbon sequestration. The system uses an electrically heated reactor with a screw conveyor. To preliminarily assess the feasibility of this system, experiments were carried out using wheat straw at temperatures of 300, 400, 500, 600, and 700 °C for the pyrolysis reactor. The resulting gas-to-feedstock mass ratio ranged from 29.04 % at 300 °C to 52.7 % at 700 °C reactor temperature, the biochar mass yield ratio to feedstock varied from 39.41 % to 27.36 % (at 700 °C), and the pyrolysis liquid ranged from 31.55 % to 27.36 % (at 700 °C). The pyrolytic liquid contained a high water content relative to its mass, reaching up to 95.2 % at 700 °C, rendering it less suitable as an energy feedstock. At a reactor temperature of 700 °C, the energy value of the gas produced from the feedstock was twice that of the electricity used for the pyrolysis process. These results suggest the feasibility and operation of the proposed installation.

3.
Materials (Basel) ; 16(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36770272

ABSTRACT

The search for an effective, cost-efficient, and selective sorbent for CO2 capture technologies has been a focus of research in recent years. Many technologies allow efficient separation of CO2 from industrial gases; however, most of them (particularly amine absorption) are very energy-intensive processes not only from the point of view of operation but also solvent production. The aim of this study was to determine CO2 and CH4 sorption capacity of pyrolyzed spruce wood under a wide range of pressures for application as an effective adsorbent for gas separation technology such as Pressure Swing Adsorption (PSA) or Temperature Swing Adsorption (TSA). The idea behind this study was to reduce the carbon footprint related to the transport and manufacturing of sorbent for the separation unit by replacing it with a material that is the direct product of pyrolysis. The results show that pyrolyzed spruce wood has a considerable sorption capacity and selectivity towards CO2 and CH4. Excess sorption capacity reached 1.4 mmol·g-1 for methane and 2.4 mmol·g-1 for carbon dioxide. The calculated absolute sorption capacity was 1.75 mmol·g-1 at 12.6 MPa for methane and 2.7 mmol·g-1 at 4.7 MPa for carbon dioxide. The isotherms follow I type isotherm which is typical for microporous adsorbents.

4.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629553

ABSTRACT

This paper presents the research results of the effect of using calcium oxide and potassium permanganate on the combustion of pellets from wheat bran and beet pulp. The measurements were performed in the technical laboratory of the Centre of Energy Utilization of Non-Traditional Energy Sources in Ostrava. The research examined the effect of the use of chemical substances on the amount of air pollutants from biomass thermal conversion in a low-power boiler and the process temperature. First, we performed technical and elementary analyses of agricultural waste. The raw material was then comminuted, mixed with a selected additive, pelletized, and finally burned in a low-power boiler. The additive was added in three proportions: 1:20, 1:10, and 1:6.67 (i.e., 15%) relative to the fuel weight. The combustion process efficiency was measured using a flue gas analyzer and three thermocouples attached to the data recorder. From the measurement results, we were able to determine the percentage reduction of pollutant emissions into the atmosphere (CO, NOx, and SO2) due to the use of additives. Because emission standards are becoming increasingly stringent and fuel and energy prices are rising, the results presented in this article may be useful to agri-food processing plants that want to manage these materials thermally.

5.
Materials (Basel) ; 15(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35161174

ABSTRACT

Granulated beet pulp and wheat straw, first separately and then mixed in a weight ratio of 50/50%, underwent a pyrolysis process in a laboratory batch generator with process temperatures of 400 and 500 °C. The feedstock's chemical composition and the pyrolysis products' chemical composition (biochar and pyrolysis gas) were analysed. A synergistic effect was observed in the co-pyrolysis of the combined feedstock, which occurred as an increase the content of the arising gas in relation to the total weight of the products. and as a reduction of bio-oil content. The maximum gas proportion was 21.8% at 500 °C and the minimum between 12.6% and 18.4% for the pyrolysis of individual substrates at 400 °C. The proportions of the gases, including CO, CO2, CH4, H2, and O2, present in the resulting synthesis gases were also analysed. The usage of a higher pyrolysis final temperature strongly affected the increase of the CH4 and H2 concentration and the decrease of CO2 and CO concentration in the pyrolysis gas. The highest percentage of hydrogen in the synthesis gas, around 33%vol, occurred at 500 °C during co-pyrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL