Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2730, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302620

ABSTRACT

In Uganda, the challenge of generating and timely reporting essential antimicrobial resistance (AMR) data has led to overreliance on empirical antibiotic therapy, exacerbating the AMR crisis. To address this issue, this study aimed to adapt a one-step AMR testing protocol alongside an SMS (Short Message Service) result relay system (SRRS), with the potential to reduce the turnaround time for AMR testing and result communication from 4 days or more to 1 day in Ugandan clinical microbiology laboratories. Out of the 377 samples examined, 54 isolates were obtained. Notably, E. coli (61%) and K. pneumoniae (33%) were the most frequently identified, majority testing positive for ESBL. Evaluation of three AMR testing protocols revealed varying sensitivity and specificity, with Protocol A (ChromID ESBL-based) demonstrating high sensitivity (100%) but no calculable specificity, Protocol B (ceftazidime-based) showing high sensitivity (100%) and relatively low specificity (7.1%), and Protocol C (cefotaxime-based) exhibiting high sensitivity (97.8%) but no calculable specificity. ESBL positivity strongly correlated with resistance to specific antibiotics, including cefotaxime, ampicillin, and aztreonam (100%), cefuroxime (96%), ceftriaxone (93%), and trimethoprim sulfamethoxazole (87%). The potential of integrating an SRRS underscored the crucial role this could have in enabling efficient healthcare communication in AMR management. This study underscores the substantial potential of the tested protocols for accurately detecting ESBL production in clinical samples, potentially, providing a critical foundation for predicting and reporting AMR patterns. Although considerations related to specificity warrant careful assessment before widespread clinical adoption.


Subject(s)
Enterobacteriaceae , Escherichia coli , Humans , Uganda , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae , Cefotaxime , Microbial Sensitivity Tests
2.
BMC Microbiol ; 23(1): 214, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553587

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is a major public health challenge, particularly in sub-Saharan Africa (SSA). This study aimed to investigate the evolution and predict the future outlook of AMR in SSA over a 12-year period. By analysing the trends and patterns of AMR, the study sought to enhance our understanding of this pressing issue in the region and provide valuable insights for effective interventions and control measures to mitigate the impact of AMR on public health in SSA. RESULTS: The study found that general medicine patients had the highest proportion of samples with AMR. Different types of samples showed varying levels of AMR. Across the studied locations, the highest resistance was consistently observed against ceftaroline (ranging from 68 to 84%), while the lowest resistance was consistently observed against ceftazidime avibactam, imipenem, meropenem, and meropenem vaborbactam (ranging from 92 to 93%). Notably, the predictive analysis showed a significant increasing trend in resistance to amoxicillin-clavulanate, cefepime, ceftazidime, ceftaroline, imipenem, meropenem, piperacillin-tazobactam, and aztreonam over time. CONCLUSIONS: These findings suggest the need for coordinated efforts and interventions to control and prevent the spread of AMR in SSA. Targeted surveillance based on local resistance patterns, sample types, and patient populations is crucial for effective monitoring and control of AMR. The study also highlights the urgent need for action, including judicious use of antibiotics and the development of alternative treatment options to combat the growing problem of AMR in SSA.


Subject(s)
Anti-Bacterial Agents , Ceftazidime , Humans , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Meropenem/pharmacology , Klebsiella pneumoniae , Drug Resistance, Bacterial , Imipenem , Africa South of the Sahara/epidemiology , Microbial Sensitivity Tests , Ceftaroline
3.
Am J Trop Med Hyg ; 104(5): 1703-1708, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33724922

ABSTRACT

With shortages of face masks being reported worldwide, it is critical to consider alternatives to commercially manufactured face masks. This study aimed to test and compare the efficacy of various makes of locally made or homemade cloth face masks obtained from face-mask vendors in Kampala, Uganda, during the COVID-19 pandemic. The testing was performed to assess the bacterial filtration efficiency (BFE), breathability, distance-dependent fitness, and reusability of the locally made or homemade cloth face masks, while considering the most commonly used non-published face-mask decontamination approaches in Uganda. During laboratory experimentation, modified protocols from various face-mask testing organizations were adopted. Ten different face-mask types were experimented upon; each face-mask type was tested four times for every single test, except for the decontamination protocols involving washing where KN95 and surgical face masks were not included. Among the locally made or homemade cloth face masks, the double-layered cloth face masks (described as F) had better BFE and distance-dependent fitness characteristics, they could be reused, and had good breathability, than the other locally made or homemade cloth face masks. Despite these good qualities, the certainty of these face masks protecting wearers against COVID-19 remains subject to viral filtration efficiency testing.


Subject(s)
COVID-19/prevention & control , Masks , SARS-CoV-2 , COVID-19/epidemiology , Humans , Laboratories , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...