Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 10(3): e0121528, 2015.
Article in English | MEDLINE | ID: mdl-25816330

ABSTRACT

Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-ß activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.


Subject(s)
Eicosapentaenoic Acid/administration & dosage , Liver Cirrhosis, Experimental/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Receptor, Melanocortin, Type 4/deficiency , Adipokines/blood , Adiponectin/blood , Animals , Disease Models, Animal , Eicosapentaenoic Acid/pharmacology , Liver/drug effects , Liver/pathology , Liver Cirrhosis, Experimental/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology
2.
Am J Pathol ; 179(5): 2454-63, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21906580

ABSTRACT

Obesity may be viewed as a state of chronic low-grade inflammation that participates in the development of the metabolic syndrome. Nonalcoholic steatohepatitis (NASH) is considered a hepatic phenotype of the metabolic syndrome and a high risk for progression to cirrhosis and hepatocellular carcinoma. Although the "two hit" hypothesis suggests involvement of excessive hepatic lipid accumulation and chronic inflammation, the molecular mechanisms underlying the development of NASH remain unclear, in part because of lack of appropriate animal models. Herein we report that melanocortin 4 receptor-deficient mice (MC4R-KO) develop steatohepatitis when fed a high-fat diet, which is associated with obesity, insulin resistance, and dyslipidemia. Histologic analysis reveals inflammatory cell infiltration, hepatocyte ballooning, and pericellular fibrosis in the liver in MC4R-KO mice. Of note, all of the MC4R-KO mice examined developed well-differentiated hepatocellular carcinoma after being fed a high-fat diet for 1 year. They also demonstrated enhanced adipose tissue inflammation, ie, increased macrophage infiltration and fibrotic changes, which may contribute to excessive lipid accumulation and enhanced fibrosis in the liver. Thus, MC4R-KO mice provide a novel mouse model of NASH with which to investigate the sequence of events that make up diet-induced hepatic steatosis, liver fibrosis, and hepatocellular carcinoma and to aid in understanding the pathogenesis of NASH, pursuing specific biomarkers, and evaluating potential therapeutic strategies.


Subject(s)
Fatty Liver/etiology , Receptor, Melanocortin, Type 4/deficiency , Animals , Carcinoma, Hepatocellular/etiology , Disease Models, Animal , Lipid Metabolism/physiology , Lipid Peroxides/metabolism , Liver Cirrhosis/etiology , Liver Neoplasms/etiology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidative Stress/physiology , Phenotype , Triglycerides/metabolism
3.
Circ Res ; 105(1): 25-32, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19478204

ABSTRACT

Obese adipose tissue is markedly infiltrated by macrophages, suggesting that they may participate in the inflammatory pathways that are activated in obese adipose tissue. Evidence has suggested that saturated fatty acids released via adipocyte lipolysis serve as a naturally occurring ligand that stimulates Toll-like receptor (TLR)4 signaling, thereby inducing the inflammatory responses in macrophages in obese adipose tissue. Through a combination of cDNA microarray analyses of saturated fatty acid-stimulated macrophages in vitro and obese adipose tissue in vivo, here we identified activating transcription factor (ATF)3, a member of the ATF/cAMP response element-binding protein family of basic leucine zipper-type transcription factors, as a target gene of saturated fatty acids/TLR4 signaling in macrophages in obese adipose tissue. Importantly, ATF3, when induced by saturated fatty acids, can transcriptionally repress tumor necrosis factor-alpha production in macrophages in vitro. Chromatin immunoprecipitation assay revealed that ATF3 is recruited to the region containing the activator protein-1 site of the endogenous tumor necrosis factor-alpha promoter. Furthermore, transgenic overexpression of ATF3 specifically in macrophages results in the marked attenuation of proinflammatory M1 macrophage activation in the adipose tissue from genetically obese KKA(y) mice fed high-fat diet. This study provides evidence that ATF3, which is induced in obese adipose tissue, acts as a transcriptional repressor of saturated fatty acids/TLR4 signaling, thereby revealing the negative feedback mechanism that attenuates obesity-induced macrophage activation. Our data also suggest that activation of ATF3 in macrophages offers a novel therapeutic strategy to prevent or treat obesity-induced adipose tissue inflammation.


Subject(s)
Activating Transcription Factor 3/physiology , Adipose Tissue/metabolism , Fatty Acids/metabolism , Macrophage Activation , Obesity/pathology , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Feedback, Physiological , Gene Expression Profiling , Inflammation , Macrophages/cytology , Male , Mice , Mice, Inbred Strains , Signal Transduction , Transcription Factors
4.
Nanotechnology ; 17(10): 2567-73, 2006 May 28.
Article in English | MEDLINE | ID: mdl-21727506

ABSTRACT

Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of UV photosensor. Recently, ZnO (zinc oxide) nanowires have been extensively investigated for electronic and optoelectronic device applications. ZnO nanowires are expected to have good UV response due to their large surface area to volume ratio, and they might enhance the performance of UV photosensors. In this paper, a new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in non-uniform electric fields. ZnO nanowires, which were synthesized by nanoparticle-assisted pulsed-laser deposition (NAPLD) and suspended in ethanol, were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Under UV irradiation, the conductance of the DEP-trapped ZnO nanowires exponentially increased with a time constant of a few minutes. The slow UV response of ZnO nanowires was similar to that observed with ZnO thin films and might be attributed to adsorption and photodesorption of ambient gas molecules such as O(2) or H(2)O. At higher UV intensity, the conductance response became larger. The DEP-fabricated ZnO nanowire UV photosensor could detect UV light down to 10 nW cm(-2) intensity, indicating a higher UV sensitivity than ZnO thin films or ZnO nanowires assembled by other methods.

SELECTION OF CITATIONS
SEARCH DETAIL