Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 17999, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289440

ABSTRACT

Immunoglobulin A (IgA) is a candidate antibody for oral passive immunization against mucosal pathogens like Shiga toxin-producing Escherichia coli (STEC). We previously established a mouse IgG monoclonal antibody (mAb) neutralizing Shiga toxin 1 (Stx1), a bacterial toxin secreted by STEC. We designed cDNA encoding an anti-Stx1 antibody, in which variable regions were from the IgG mAb and all domains of the heavy chain constant region from a mouse IgA mAb. Considering oral administration, we expressed the cDNA in a plant expression system aiming at the production of enough IgA at low cost. The recombinant-IgA expressed in Arabidopsis thaliana formed the dimeric IgA, bound to the B subunit of Stx1, and neutralized Stx1 toxicity to Vero cells. Colon injury was examined by exposing BALB/c mice to Stx1 via the intrarectal route. Epithelial cell death, loss of crypt and goblet cells from the distal colon were observed by electron microscopy. A loss of secretory granules containing MUC2 mucin and activation of caspase-3 were observed by immunohistochemical methods. Pretreatment of Stx1 with the plant-based recombinant IgA completely suppressed caspase-3 activation and loss of secretory granules. The results indicate that a plant-based recombinant IgA prevented colon damage caused by Stx1 in vivo.


Subject(s)
Immunoglobulin A , Shiga-Toxigenic Escherichia coli , Chlorocebus aethiops , Mice , Animals , Shiga Toxin 1 , Caspase 3 , Vero Cells , DNA, Complementary , Immunoglobulin G , Shiga-Toxigenic Escherichia coli/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , Colon/metabolism , Mucins
3.
Planta ; 250(4): 1255-1264, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31222495

ABSTRACT

MAIN CONCLUSION: An edible plant was tested as a host for the production of secretory monoclonal IgA against Shiga toxin 1 (Stx1). The lettuce-derived IgA completely protected Vero cells from Stx1. Secretory immunoglobulin A (SIgA) is thought to control mucosal infections and thus it may be applicable to oral passive immunotherapy. Edible plants are candidate hosts for producing oral formulations with SIgA against pathogenic agents. We previously established a recombinant IgA specific for the B subunit of Shiga toxin 1 (Stx1B) consisting of the Fab fragment of Stx1B-specific monoclonal IgG and the Fc region of IgA (hyIgA). Here, we developed transgenic lettuce (Lactuca sativa) that produces hyIgA in a secretory form (S-hyIgA). An Arabidopsis-derived light-harvesting complex II (LHCB) promoter was used for the expression of all four transgenes (hyIgA heavy, light and j chains, and secretory component). Agrobacterium-mediated transformation was carried out to introduce genes into lettuce leaf discs by means of a single vector harboring all four transgenes. Consistent with the tissue specificity of the LHCB promoter, the expression of hyIgA transgenes was observed in leaf and stem tissues, which contain chloroplasts, at the mRNA and protein levels. The leaves produced hyIgA in a more than tenfold higher yield as compared with stems. The lettuce-derived S-hyIgA was found to bind to Stx1B in a dose-dependent manner by means of ELISA. A leaf extract of the transgenic lettuce completely neutralized the cytotoxicity of Stx1 against Vero cells, which are highly susceptible to Stx1. In conclusion, we established a transgenic lettuce producing a secretory form of hyIgA that can bind bacterial toxin. The results indicate that edible practical plants containing S-hyIgA will provide a possible means for immunotherapy for food poisoning.


Subject(s)
Antibodies, Monoclonal/immunology , Foodborne Diseases/therapy , Immunoglobulin A, Secretory/immunology , Lactuca/genetics , Shiga Toxin 1/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Chlorocebus aethiops , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin A, Secretory/genetics , Immunotherapy , Lactuca/immunology , Recombinant Proteins , Shiga Toxin 1/genetics , Vero Cells
4.
Plant Cell Rep ; 38(2): 161-172, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30506369

ABSTRACT

KEY MESSAGE: A key module, secretory component (SC), was efficiently expressed in Arabidopsis thaliana. The plant-based SC and immunoglobulin A of animal or plant origin formed secretory IgA that maintains antigen-binding activity. Plant expression systems are suitable for scalable and cost-effective production of biologics. Secretory immunoglobulin A (SIgA) will be useful as a therapeutic antibody against mucosal pathogens. SIgA is equipped with a secretory component (SC), which assists the performance of SIgA on the mucosal surface. Here we produced SC using a plant expression system and formed SIgA with dimeric IgAs produced by mouse cells as well as by whole plants. To increase the expression level, an endoplasmic reticulum retention signal peptide, KDEL (Lys-Asp-Glu-Leu), was added to mouse SC (SC-KDEL). The SC-KDEL cDNA was inserted into a binary vector with a translational enhancer and an efficient terminator. The SC-KDEL transgenic Arabidopsis thaliana produced SC-KDEL at the level of 2.7% of total leaf proteins. In vitro reaction of the plant-derived SC-KDEL with mouse dimeric monoclonal IgAs resulted in the formation of SIgA. When reacted with Shiga toxin 1 (Stx1)-specific ones, the antigen-binding activity was maintained. When an A. thaliana plant expressing SC-KDEL was crossed with one expressing dimeric IgA specific for Stx1, the plant-based SIgA exhibited antigen-binding activity. Leaf extracts of the crossbred transgenic plants neutralized Stx1 cytotoxicity against Stx1-sensitive cells. These results suggest that transgenic plants expressing SC-KDEL will provide a versatile means of SIgA production.


Subject(s)
Arabidopsis/metabolism , Immunoglobulin A, Secretory/metabolism , Protein Multimerization , Secretory Component/metabolism , Shiga Toxin 1/metabolism , Animals , Arabidopsis/genetics , Crosses, Genetic , DNA, Bacterial/genetics , Homozygote , Mice , Oligopeptides , Plants, Genetically Modified , Protein Sorting Signals
5.
Sci Rep ; 7: 45843, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368034

ABSTRACT

Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.


Subject(s)
Antibodies, Monoclonal/immunology , Arabidopsis/genetics , Escherichia coli O157/immunology , Immunoglobulin A/pharmacology , Infections/drug therapy , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Arabidopsis/immunology , Caco-2 Cells , Escherichia coli O157/drug effects , Escherichia coli O157/pathogenicity , Humans , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Immunotherapy , Infections/immunology , Infections/microbiology , Mice , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/immunology
6.
Virulence ; 5(8): 819-24, 2014.
Article in English | MEDLINE | ID: mdl-25469594

ABSTRACT

Shiga toxin 1 (Stx1) is a virulence factor of enterohaemorrhagic Escherichia coli strains such as O157:H7 and Shigella dysenteriae. To prevent entry of Stx1 from the mucosal surface, an immunoglobulin A (IgA) specific for Stx1 would be useful. Due to the difficulty of producing IgA monoclonal antibodies (mAb) against the binding subunit of Stx1 (Stx1B) in mice, we took advantage of recombinant technology that combines the heavy chain variable region from Stx1B-specific IgG1 mAb and the Fc region from IgA. The resulting hybrid IgG/IgA was stably expressed in Chinese hamster ovary cells as a dimeric hybrid IgG/IgA. We separated the dimeric hybrid IgG/IgA from the monomeric one by size-exclusion chromatography. The dimer fraction, confirmed by immunoblot analyses, was used for toxin neutralization assays. The dimeric IgG/IgA was shown to neutralize Stx1 toxicity toward Vero cells by assaying their viability. To compare the relative effectiveness of the dimeric hybrid IgG/IgA and parental IgG1 mAb, Stx1-induced apoptosis was examined using 2 different cell lines, Ramos and Vero cells. The hybrid IgG/IgA inhibited apoptosis more efficiently than the parental IgG1 mAb in both cases. The results indicated that the use of high affinity binding sites as variable regions of IgA would increase the utility of IgA specific for virulence factors.


Subject(s)
Antibodies, Monoclonal/immunology , Apoptosis , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/immunology , Animals , CHO Cells , Chlorocebus aethiops , Chromatography, Gel , Cricetinae , Cricetulus , Hybridomas , Mice , Protein Multimerization , Recombinant Proteins/immunology , Shiga Toxin/toxicity , Vero Cells
7.
Biol Pharm Bull ; 37(9): 1510-5, 2014.
Article in English | MEDLINE | ID: mdl-24989136

ABSTRACT

Antigen-specific immunoglobulin A (IgA) may be useful for preventing infectious diseases through passive immunization on the mucosal surface. We previously established mouse IgA and IgG monoclonal antibodies (mAbs) specific for the binding subunit of Shiga toxin 1 (Stx1B). We also developed a recombinant hybrid-IgG/IgA, in which variable regions from the IgG mAb were present. The binding activity of recombinant hybrid-IgG/IgA was verified by transient expression. Aiming at a constant supply, we established Chinese hamster ovary cells stably expressing monomeric or dimeric hybrid-IgG/IgA. The cDNAs encoding heavy and light chains were co-expressed for the monomeric hybrid-IgG/IgA, while those encoding heavy, light, and joining chains were co-expressed for the dimeric one. Serum-free culture supernatants of the cloned transfectants were subjected to size-exclusion chromatography. The elution patterns showed that the binding to immobilized Stx1B and the immunoblot signals of assembled immunoglobulins were correlated. In the transfectant for the dimeric hybrid-IgG/IgA, both monomers and dimers were observed. Size-exclusion chromatography enabled us to prepare a sample of the dimeric hybrid-IgG/IgA devoid of the monomeric one. The monomeric and dimeric forms of hybrid-IgG/IgA were prepared from the respective transfectants to examine the neutralization of Stx1. After pretreatment with monomeric or dimeric hybrid-IgG/IgA, the cytotoxicity of Stx1 toward Vero cells was abolished. Furthermore, the dimeric form was more than 10-fold more effective than the monomeric one in terms of toxin neutralization. These results suggest that the tetravalent feature of the binding sites of the dimeric hybrid-IgG/IgA contributes to the efficacy of toxin neutralization.


Subject(s)
Immunoglobulin A/immunology , Immunoglobulin G/immunology , Protein Subunits/immunology , Shiga Toxin 1/immunology , Animals , CHO Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Protein Multimerization , Protein Subunits/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Shiga Toxin 1/metabolism , Vero Cells
8.
PLoS One ; 8(11): e80712, 2013.
Article in English | MEDLINE | ID: mdl-24312238

ABSTRACT

Shiga toxin 1 (Stx1) is a virulence factor of enterohemorrhagic Escherichia coli, such as the O157:H7 strain. In the intestines, secretory IgA (SIgA) is a major component of the immune defense against pathogens and toxins. To form SIgA, the production of dimeric IgA that retains biological activity is an important step. We previously established hybrid-IgG/IgA having variable regions of the IgG specific for the binding subunit of Stx1 (Stx1B) and the heavy chain constant region of IgA. If hybrid-IgG/IgA cDNAs can be expressed in plants, therapeutic or preventive effects may be expected in people eating those plants containing a "plantibody". Here, we established transgenic Arabidopsis thaliana expressing dimeric hybrid-IgG/IgA. The heavy and light chain genes were placed under the control of a bidirectional promoter and terminator of the chlorophyll a/b-binding protein of Arabidopsis thaliana (expression cassette). This expression cassette and the J chain gene were subcloned into a single binary vector, which was then introduced into A. thaliana by means of the Agrobacterium method. Expression and assembly of the dimeric hybrid-IgG/IgA in plants were revealed by ELISA and immunoblotting. The hybrid-IgG/IgA bound to Stx1B and inhibited Stx1B binding to Gb3, as demonstrated by ELISA. When Stx1 holotoxin was pre-treated with the resulting plantibody, the cytotoxicity of Stx1 was inhibited. The toxin neutralization was also demonstrated by means of several assays including Stx1-induced phosphatidylserine translocation on the plasma membrane, caspase-3 activation and 180 base-pair DNA ladder formation due to inter-nucleosomal cleavage. These results indicate that edible plants containing hybrid-IgG/IgA against Stx1B have the potential to be used for immunotherapy against Stx1-caused food poisoning.


Subject(s)
Immunoglobulin A/immunology , Immunoglobulin G/immunology , Plantibodies/immunology , Shiga Toxin 1/immunology , Antibodies, Blocking/genetics , Antibodies, Blocking/immunology , Antigens, Tumor-Associated, Carbohydrate/immunology , Antigens, Tumor-Associated, Carbohydrate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Death/immunology , Gene Expression , Gene Order , Immunoglobulin A/genetics , Immunoglobulin G/genetics , Plantibodies/genetics , Plants, Genetically Modified , Protein Binding/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Shiga Toxin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...