Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Plant Cell Physiol ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441328

ABSTRACT

The circadian clock is an essential system that drives the 24-hour expression rhythms for adaptation to day-night cycles. The molecular mechanism of the circadian clock has been extensively studied in cyanobacteria harboring the KaiC-based timing system. Nevertheless, our understanding of the physiological significance of the cyanobacterial circadian clock is still limited. In this study, we cultured wild-type Synechococcus elongatus PCC 7942 and circadian clock mutants in day-night cycles at different light qualities and found that the growth of the circadian clock mutants was specifically impaired during 12-hour blue light/12-hour dark cycles (BD) for the first time. The arrhythmic mutant kaiCAA was further analyzed by photosynthetic measurements. Compared with the wild type, the mutant exhibited decreases in the chlorophyll content, the ratio of photosystem I to II, net O2 evolution rate, efficiency of photosystem II photochemistry during BD cycles. These results indicate that the circadian clock is necessary for the growth and the maintenance of the optimum function of the photosynthetic apparatus in cyanobacteria under blue photoperiodic conditions.

3.
Chembiochem ; 25(2): e202300760, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38063314

ABSTRACT

The bioproduction of valuable materials using biomass sugars is attracting attention as an environmentally friendly technology. However, its ability to fulfil the enormous demand to produce fuels and chemical products is limited. With a view towards the future development of a novel bioproduction process that addresses these concerns, this study investigated the feasibility of bioproduction of valuable substances using Corynebacterium glutamicum (C. glutamicum) with a chemically synthesized non-natural sugar solution. Cells were grown using the synthesized sugar solution as the sole carbon source and they produced lactate under oxygen-limited conditions. It was also found that some of the sugars produced by the series of chemical reactions inhibited cell growth since prior removal of these sugars increased the cell growth rate. The results obtained in this study indicate that chemically synthesized sugars have the potential to resolve the concerns regarding future biomass sugar supply in microbial biomanufacturing.


Subject(s)
Corynebacterium glutamicum , Sugars , Lactic Acid , Corynebacterium glutamicum/genetics , Biomass , Metabolic Engineering/methods , Fermentation
4.
Chem Sci ; 14(46): 13475-13484, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38033894

ABSTRACT

Autocatalytic mechanisms in carbon metabolism, such as the Calvin cycle, are responsible for the biological assimilation of CO2 to form organic compounds with complex structures, including sugars. Compounds that form C-C bonds with CO2 are regenerated in these autocatalytic reaction cycles, and the products are concurrently released. The formose reaction in basic aqueous solution has attracted attention as a nonbiological reaction involving an autocatalytic reaction cycle that non-enzymatically synthesizes sugars from the C1 compound formaldehyde. However, formaldehyde and sugars, which are the substrate and products of the formose reaction, respectively, are consumed in Cannizzaro reactions, particularly under basic aqueous conditions, which makes the formose reaction a fragile sugar-production system. Here, we constructed an autocatalytic reaction cycle for sugar synthesis under neutral conditions. We focused on the weak Brønsted basicity of oxometalate anions such as tungstates and molybdates as catalysts, thereby enabling the aldol reaction, retro-aldol reaction, and aldose-ketose transformation, which collectively constitute the autocatalytic reaction cycle. These bases acted on sugar molecules of substrates together with sodium ions of a Lewis acid to promote deprotonation under neutral conditions, which is the initiation step of the reactions forming an autocatalytic cycle, whereas the Cannizzaro reaction was inhibited. The autocatalytic reaction cycle established using this abiotic approach is a robust sugar production system. Furthermore, we found that the synthesized sugars work as energy storage substances that sustain microbial growth despite their absence in nature.

5.
J Biosci Bioeng ; 136(2): 75-86, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37246137

ABSTRACT

All biological phenomena can be classified as open, dissipative and non-linear. Moreover, the most typical phenomena are associated with non-linearity, dissipation and openness in biological systems. In this review article, four research topics on non-linear biosystems are described to show the examples from various biological systems. First, membrane dynamics of a lipid bilayer for the cell membrane is described. Since the cell membrane separates the inside of the cell from the outside, self-organizing systems that form spatial patterns on membranes often depend on non-linear dynamics. Second, various data banks based on recent genomics analysis supply the data including vast functional proteins from many organisms and their variable species. Since the proteins existing in nature are only a very small part of the space represented by amino acid sequence, success of mutagenesis-based molecular evolution approach crucially depends on preparing a library with high enrichment of functional proteins. Third, photosynthetic organisms depend on ambient light, the regular and irregular changes of which have a significant impact on photosynthetic processes. The light-driven process proceeds through many redox couples in the cyanobacteria constituting chain of redox reactions. The fourth topic focuses on a vertebrate model, the zebrafish, which can help to understand, predict and control the chaos of complex biological systems. In particular, during early developmental stages, developmental differentiation occurs dynamically from a fertilized egg to divided and mature cells. These exciting fields of complexity, chaos, and non-linear science have experienced impressive growth in recent decades. Finally, future directions for non-linear biosystems are presented.


Subject(s)
Cyanobacteria , Zebrafish , Animals , Cell Membrane , Photosynthesis , Lipid Bilayers
6.
Chem Commun (Camb) ; 59(47): 7224-7227, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37221861

ABSTRACT

Aperture shape and size of flexible hydrogen-bonded organic frameworks (HOF) were statically modulated using various aromatic solvents, and dynamically changed by desorption and adsorption of the solvent molecules.


Subject(s)
Hydrogen , Pyrenes , Adsorption , Solvents
7.
Adv Sci (Weinh) ; 10(16): e2300268, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37029464

ABSTRACT

The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.

8.
Chem Sci ; 14(3): 613-620, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36741519

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) has attracted intensive attention as a technology to achieve a carbon-neutral society. The use of gas diffusion electrodes (GDEs) enables the realization of high-rate CO2RRs, which is one of the critical requirements for social implementation. Although both a high reaction rate and good selectivity are simultaneously required for electrocatalysts on GDEs, no systematic study of the relationship among active metal centers in electrocatalysts, reaction rate, and selectivity under high-rate CO2RR conditions has been reported. In the present study, we employed various metal-doped covalent triazine frameworks (M-CTFs) as platforms for CO2 reduction reaction (CO2RR) electrocatalysts on GDEs and systematically investigated them to deduce sophisticated design principles using a combined computational and experimental approach. The Ni-CTF showed both high selectivity (faradaic efficiency (FE) > 98% at -0.5 to -0.9 V vs. reversible hydrogen electrode) and a high reaction rate (current density < -200 mA cm-2) for CO production. By contrast, the Sn-CTF exhibited selective formic acid production, and the FE and partial current density reached 85% and 150 mA cm-2, respectively. These results for the CO2RR activity and selectivity at high current density with respect to metal centers correspond well with predictions based on first-principles calculations. This work is the first demonstration of a clear relationship between the computational adsorption energy of intermediates depending on metal species and the experimental high-rate gaseous CO2RR.

9.
Small ; 18(50): e2205323, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36319467

ABSTRACT

The electrochemical CO2 reduction reaction (CO2 RR) is a promising strategy for closing the carbon cycle. Increasing the current density ( J) for CO2 RR products is a critical requirement for the social implementation of this technology. Herein, nanoscale tin-oxide-modified copper-oxide foam is hybridized with a carbon-based gas-diffusion electrode (GDE). Using the resultant electrode, the Jformate is increased to -1152 mA cm-2 at -1.2 V versus RHE in 1 m KOH, which is the highest value for CO2 -to-formate electrolysis. The formate faradaic efficiency (FEformate ) reaches ≈99% at -0.6 V versus RHE. The achievement of ultra-high-rate formate production is attributable to the following factors: i) homogeneously-modified Sn atoms suppressing H2 evolution and ii) the hydrophobic carbon nanoparticles on GDEs penetrating the macroporous structure of the foam causing the increase in the thickness of triple-phase interface. Additionally, the FEformate remains at ≈70% under a high J of -1.0 A cm-2 for more than 20 h.

10.
Nat Commun ; 13(1): 3067, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654796

ABSTRACT

Biophotovoltaics (BPV) generates electricity from reducing equivalent(s) produced by photosynthetic organisms by exploiting a phenomenon called extracellular electron transfer (EET), where reducing equivalent(s) is transferred to external electron acceptors. Although cyanobacteria have been extensively studied for BPV because of their high photosynthetic activity and ease of handling, their low EET activity poses a limitation. Here, we show an order-of-magnitude enhancement in photocurrent generation of the cyanobacterium Synechocystis sp. PCC 6803 by deprivation of the outer membrane, where electrons are suggested to stem from pathway(s) downstream of photosystem I. A marked enhancement of EET activity itself is verified by rapid reduction of exogenous electron acceptor, ferricyanide. The extracellular organic substances, including reducing equivalent(s), produced by this cyanobacterium serve as respiratory substrates for other heterotrophic bacteria. These findings demonstrate that the outer membrane is a barrier that limits EET. Therefore, depriving this membrane is an effective approach to exploit the cyanobacterial reducing equivalent(s).


Subject(s)
Synechocystis , Electricity , Electron Transport , Oxidants , Photosynthesis , Records
11.
J Plant Res ; 135(4): 555-564, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35680769

ABSTRACT

Cyclic electron transport (CET) is an attractive hypothesis for regulating photosynthetic electron transport and producing the additional ATP in oxygenic phototrophs. The concept of CET has been established in the last decades, and it is proposed to function in the progenitor of oxygenic photosynthesis, cyanobacteria. The in vivo activity of CET is frequently evaluated either from the redox state of the reaction center chlorophyll in photosystem (PS) I, P700, in the absence of PSII activity or by comparing PSI and PSII activities through the P700 redox state and chlorophyll fluorescence, respectively. The evaluation of CET activity, however, is complicated especially in cyanobacteria, where CET shares the intersystem chain, including plastoquinone, cytochrome b6/f complex, plastocyanin, and cytochrome c6, with photosynthetic linear electron transport (LET) and respiratory electron transport (RET). Here we sought to distinguish the in vivo electron transport rates in RET and CET in the cyanobacterium Synechocystis sp. PCC 6803. The reduction rate of oxidized P700 (P700+) decreased to less than 10% when PSII was inhibited, indicating that PSII is the dominant electron source to PSI but P700+ is also reduced by electrons derived from other sources. The oxidative pentose phosphate (OPP) pathway functions as the dominant electron source for RET, which was found to be inhibited by glycolaldehyde (GA). In the condition where the OPP pathway and respiratory terminal oxidases were inhibited by GA and KCN, the P700+ reduction rate was less than 1% of that without any inhibitors. This study indicate that the electron transport to PSI when PSII is inhibited is dominantly derived from the OPP pathway in Synechocystis sp. PCC 6803.


Subject(s)
Synechocystis , Chlorophyll/metabolism , Electron Transport , Light , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism
12.
Photosynth Res ; 153(1-2): 113-120, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35182311

ABSTRACT

Live cyanobacteria and algae integrated onto an extracellular electrode can generate a light-induced current (i.e., a photocurrent). Although the photocurrent is expected to be correlated with the redox environment of the photosynthetic cells, the relationship between the photocurrent and the cellular redox state is poorly understood. Here, we investigated the effect of the reduced nicotinamide adenine dinucleotide phosphate [NADP(H)] redox level of cyanobacterial cells (before light exposure) on the photocurrent using several mutants (Δzwf, Δgnd, and ΔglgP) deficient in the oxidative pentose phosphate (OPP) pathway, which is the metabolic pathway that produces NADPH in darkness. The NAD(P)H redox level and photocurrent in the cyanobacterium Synechocystis sp. PCC 6803 were measured noninvasively. Dysfunction of the OPP pathway led to oxidation of the photosynthetic NADPH pool in darkness. In addition, photocurrent induction was retarded and the current density was lower in Δzwf, Δgnd, and ΔglgP than in wild-type cells. Exogenously added glucose compensated the phenotype of ΔglgP and drove the OPP pathway in the mutant, resulting in an increase in the photocurrent. The results indicated that NADPH accumulated by the OPP pathway before illumination is a key factor for the generation of a photocurrent. In addition, measuring the photocurrent can be a non-invasive approach to estimate the cellular redox level related to NADP(H) pool in cyanobacteria.


Subject(s)
Pentose Phosphate Pathway , Synechocystis , Glucose/metabolism , NAD/metabolism , NADP/metabolism , Oxidative Stress , Pentose Phosphate Pathway/genetics , Pentoses/metabolism , Phosphates/metabolism , Synechocystis/genetics , Synechocystis/metabolism
13.
J Am Chem Soc ; 144(3): 1296-1305, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014793

ABSTRACT

The large overpotential of nonaqueous Li-O2 batteries when charging causes low round-trip efficiency and decomposition of the electrode materials and electrolyte. The origins of this overpotential have been enthusiastically explored to date; however, a full understanding has not yet been reached because of the complexity of multistep reaction mechanisms. Here, we applied structural and electrochemical analysis techniques to investigate the reaction step that results in the increase of the overpotential when charging. Rietveld refinement of ex situ powder X-ray diffraction showed that a Li-deficient phase of Li2O2, Li2-xO2, formed when discharging and was present over the course of charging. The galvanostatic intermittent titration technique revealed that the rate-determining process in the first step of charging was a solid-solution type of delithiation. The chemical diffusion coefficient of Li+ ions in Li2-xO2, DLi, decreases as the cell voltage increases, which in turn leads to a decrease in the oxidation rate of Li2-xO2. Under galvanostatic conditions, the deceleration of oxidation induces further increase of the cell voltage; therefore, an intrinsic mechanism of positive feedback to increase the cell voltage occurs in the first step. The results demonstrate that the continuity of the first step can be extended by the suppression of changes in any of the elements of the positive feedback loop, i.e., the oxidation rate, cell voltage, or DLi.

14.
Angew Chem Int Ed Engl ; 61(12): e202112769, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35076163

ABSTRACT

Although sufficient tolerance against attack by superoxide radicals (O2 - ) has been mainly recognized as an important property for Li-O2 battery (LOB) electrolytes, recent evidence has revealed that other critical factors also govern the cyclability, prompting a reconsideration of the basic design guidelines of LOB electrolytes. Here, we found that LOBs equipped with a N,N-dimethylacetamide (DMA)-based electrolyte exhibited better cyclability compared with other standard LOB electrolytes. This superior cyclability is attributable to the capabilities of quenching 1 O2 and forming highly decomposable Li2 O2 . The 1 O2 quenching capability is equivalent to that of a tetraglyme-based electrolyte containing a several millimolar concentration of a typical chemical quencher. Based on these overlooked factors, the DMA-based electrolyte led to superior cyclability despite its lower O2 - tolerance. Thus, the present work provides a novel design guideline for the development of LOB electrolytes.

15.
Photosynth Res ; 151(1): 113-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34309771

ABSTRACT

Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.


Subject(s)
Anthozoa , Cyanobacteria , Dinoflagellida , Animals , Anthozoa/genetics , Dinoflagellida/genetics , Photosynthesis/genetics , Phylogeny
16.
Plant Cell Physiol ; 63(2): 176-188, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34750635

ABSTRACT

The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.


Subject(s)
Plastoquinone , Synechococcus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Synechococcus/genetics , Synechococcus/metabolism , Temperature
17.
Photosynth Res ; 148(1-2): 57-66, 2021 May.
Article in English | MEDLINE | ID: mdl-33934289

ABSTRACT

In photosynthetic organisms, it is recognized that the intracellular redox ratio of NADPH is regulated within an appropriate range for the cooperative function of a wide variety of physiological processes. However, despite its importance, there is large variability in the values of the NADPH fraction [NADPH/(NADPH + NADP+)] quantitatively estimated to date. In the present study, the light response of the NADPH fraction was investigated by applying a novel NADP(H) extraction method using phenol / chloroform / isoamyl alcohol (PCI) in the cyanobacterium Synechocystis sp. PCC 6803. The light response of NADP(H) observed using PCI extraction was qualitatively consistent with the NAD(P)H fluorescence time course measured in vivo. Moreover, the results obtained by PCI extraction and the fluorescence-based methods were also consistent in a mutant lacking the ability to oxidize NAD(P)H in the respiratory chain, and exhibiting a unique NADPH light response. These observations indicate that the PCI extraction method allowed quantitative determination of NADP(H) redox. Notably, the PCI extraction method showed that not all NADP(H) was oxidized or reduced by light-dark transition. Specifically, the fraction of NADPH was 42% in the dark-adapted cell, and saturated at 68% in light conditions.


Subject(s)
Liquid-Liquid Extraction/methods , NADP/chemistry , NADP/metabolism , Phenol/chemistry , Photosynthesis/physiology , Synechocystis/genetics , Synechocystis/metabolism , Genetic Variation , Genotype , NADP/genetics , Photosynthesis/genetics
18.
J Am Chem Soc ; 143(19): 7394-7401, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33945262

ABSTRACT

Prior to the practical application of rechargeable aprotic Li-O2 batteries, the high charging overpotentials of these devices (which inevitably cause irreversible parasitic reactions) must be addressed. The use of redox mediators (RMs) that oxidatively decompose the discharge product, Li2O2, is one promising solution to this problem. However, the mitigating effect of RMs is currently insufficient, and so it would be beneficial to clarify the Li2O2 reductive growth and oxidative decomposition mechanisms. In the present work, Nanoscale secondary ion mass spectrometry (Nano-SIMS) isotopic three-dimensional imaging and differential electrochemical mass spectrometry (DEMS) analyses of individual Li2O2 particles established that both growth and decomposition proceeded at the Li2O2/electrolyte interface in a system containing the Br-/Br3- redox couple as the RM. The results of this study also indicated that the degree of oxidative decomposition of Li2O2 was highly dependent on the cell voltage. These data show that increasing the RM reaction rate at the Li2O2/electrolyte interface is critical to improve the cycle life of Li-O2 batteries.

19.
ACS Appl Mater Interfaces ; 13(13): 15122-15131, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33764754

ABSTRACT

The electroreduction of carbon dioxide is considered a key reaction for the valorization of CO2 emitted in industrial processes or even present in the environment. Cobalt-nitrogen co-doped carbon materials featuring atomically dispersed Co-N sites have been shown to display superior activities and selectivities for the reduction of carbon dioxide to CO, which, in combination with H2 (i.e., as syngas), is regarded as an added-value CO2-reduction product. Such catalysts can be synthesized using heat treatment steps that imply the carbonization of Co-N-containing precursors, but the detailed effects of the synthesis conditions and corresponding materials' composition on their catalytic activities have not been rigorously studied. To this end, in the present work, we synthesized cobalt-nitrogen co-doped carbon materials with different heat treatment temperatures and studied the relation among their surface- and Co-speciation and their CO2-to-CO electroreduction activity. Our results reveal that atomically dispersed cobalt-nitrogen sites are responsible for CO generation while suggesting that this CO-selectivity improves when these atomic Co-N centers are hosted in the carbon layers that cover the Co nanoparticles featured in the catalysts synthesized at higher heat treatment temperatures.

20.
Front Microbiol ; 12: 650832, 2021.
Article in English | MEDLINE | ID: mdl-33763051

ABSTRACT

Microbial extracellular electron transfer (EET) to solid-state electron acceptors such as anodes and metal oxides, which was originally identified in dissimilatory metal-reducing bacteria, is a key process in microbial electricity generation and the biogeochemical cycling of metals. Although it is now known that photosynthetic microorganisms can also generate (photo)currents via EET, which has attracted much interest in the field of biophotovoltaics, little is known about the reduction of metal (hydr)oxides via photosynthetic microbial EET. The present work quantitatively assessed the reduction of ferrihydrite in conjunction with the EET of the photosynthetic microbe Synechocystis sp. PCC 6803. Microbial reduction of ferrihydrite was found to be initiated in response to light but proceeded at higher rates when exogenous glucose was added, even under dark conditions. These results indicate that current generation from Synechocystis cells does not always need light irradiation. The qualitative trends exhibited by the ferrihydrite reduction rates under various conditions showed significant correlation with those of the microbial currents. Notably, the maximum concentration of Fe(II) generated by the cyanobacterial cells under dark conditions in the presence of glucose was comparable to the levels observed in the photic layers of Fe-rich microbial mats.

SELECTION OF CITATIONS
SEARCH DETAIL
...