Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Med Biol ; 23(1): e12578, 2024.
Article in English | MEDLINE | ID: mdl-38721549

ABSTRACT

Background: The pioneering work by Dr. Payne et al. in time-lapse cinematography for observation of the morphokinetic features of human embryos inspired us to develop a new in vitro culture system with high-resolution time-lapse cinematography (hR-TLC) back in 2001. Methods: This in vitro culture system was capable of maintaining stable culture and was constructed on an inverted microscope stage. Embryos were observed and photographed noninvasively for an extended period, up to 7 days. The obtained images were displayed at a speed of 30 frames per second and individually analyzed. Results: Using hR-TLC, human fertilization and subsequent embryonic development were visualized, revealing the time course of phenomena and many unusual dynamics. Conclusion: In this review, we summarize the results of our hR-TLC analysis of early human embryonic development over the past 20 years. In the near future, it is expected that the vast amount of information obtained by hR-TLC will be integrated into the AI system for further analysis and to provide feedback that will have the potential to improve clinical practice. In the era of SDGs and environmental awareness, we should be cautious about the direction in which AI can be utilized to avoid any further harm to the planet.

2.
J Assist Reprod Genet ; 36(8): 1571-1577, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31267335

ABSTRACT

PURPOSE: To investigate the stability of osmolality in non-humidified and humidified incubators for assisted reproductive technologies (ART). METHODS: Drops of three single-step culture media (media A, B, and C) were incubated for 5 or 6 days covered with four different mineral oils (oils A, B, C, and D) in non-humidified incubator A, non-humidified incubator B, or humidified incubator C to investigate the effects of incubator environment (humidification), drop volume, culture media, and mineral oil on the stability of osmolality in microdrops. RESULTS: A significant and linear increase was shown in the osmolality of 50-µL and 200-µL microdrops covered with mineral oil during 5 days incubation in non-humidified benchtop incubators. The maximum increase was 20 mOsm/kg, and the extent of the increase was affected by microdrop volume and possibly by the type of mineral oil used to cover the drops. In contrast, the osmolality of 50-µL and 200-µL microdrops did not change during 5 days incubation in a humidified benchtop incubator. CONCLUSIONS: Mineral oil alone may not adequately prevent gradual changes in the osmolality of low-volume microdrops during extended in vitro culture of human embryos in non-humidified incubators. As a result, the osmolality may increase to high enough levels to stress some human embryos and adversely affect clinical outcomes. We therefore recommend that the stability of osmolality should be given more consideration to ensure optimal culture conditions for ART.


Subject(s)
Embryo Culture Techniques/instrumentation , Embryo, Mammalian/cytology , Fertilization in Vitro/standards , Humidity/standards , Incubators/standards , Culture Media , Embryo Culture Techniques/methods , Embryo Culture Techniques/standards , Embryonic Development , Female , Humans , Mineral Oil , Osmolar Concentration
3.
Gene ; 542(1): 23-8, 2014 May 25.
Article in English | MEDLINE | ID: mdl-24631266

ABSTRACT

Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of ß-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken.


Subject(s)
Chickens/genetics , Feathers/cytology , Feathers/metabolism , Gene Expression Regulation , beta-Keratins/genetics , Animals , Base Sequence , Biological Evolution , Estradiol/pharmacology , Female , Male , Oligonucleotide Array Sequence Analysis , Open Reading Frames/genetics , RNA, Messenger/biosynthesis , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...