Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Aging Neurosci ; 10: 31, 2018.
Article in English | MEDLINE | ID: mdl-29472854

ABSTRACT

Patients with later-life depression (LLD) show abnormal gray matter (GM) volume, white matter (WM) integrity and functional connectivity in the anterior cingulate cortex (ACC) and posterior superior temporal gyrus (pSTG), but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI) system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI) and resting-state functional MRI were used to assess ACC-pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC-pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC-pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC-pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

2.
Sci Rep ; 8(1): 3014, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445197

ABSTRACT

Although literature evidence suggests deficits in social and non-social cognition in patients with autistic spectrum disorder (ASD) and schizophrenia (SCZ), the difference in neural correlates of the impairments between the two disorders has not been elucidated. We examined brain function in response to a non-social cognition and a social cognition task using functional near-infrared spectroscopy (fNIRS) in 13 patients with ASD, 15 patients with SCZ, and 18 healthy subjects. We assessed the brain function of participants using a verbal fluency task and an emotional facial recognition task. The patients with ASD showed significantly reduced brain activation in the left frontotemporal area during both tasks compared to healthy subjects. The patients with ASD with larger score in 'attention to detail' in the autism spectrum quotient showed lower activation of the left frontotemporal area during the two tasks. The patients with SCZ showed significantly reduced activation, compared to healthy subjects, and greater activation, compared to patients with ASD, in the area during the verbal fluency task. The patients with SCZ with more severe symptoms had lower brain activation during the task in this area. Our results suggest that two distinct areas are involved in the distinctive brain pathophysiology relevant to cognitive processing in patients with ASD and SCZ.


Subject(s)
Autism Spectrum Disorder/diagnosis , Frontal Lobe/diagnostic imaging , Schizophrenia/diagnosis , Spectroscopy, Near-Infrared/methods , Temporal Lobe/diagnostic imaging , Adult , Cognition , Diagnosis, Differential , Emotions , Female , Humans , Male , Middle Aged , Social Behavior , Young Adult
3.
J Affect Disord ; 233: 79-85, 2018 06.
Article in English | MEDLINE | ID: mdl-28844310

ABSTRACT

BACKGROUND: Glycosylation is a common posttranslational modification in protein biosynthesis that is implicated in several disease states. It has been reported that specific protein glycan structures are useful as biomarkers for cancer and some neuropsychiatric diseases; however, the relationship between plasma protein glycosylation and major depressive disorder (MDD) has not been investigated to date. The aim of this study was to determine whether plasma protein glycan structures are altered in depression using a stress-based mouse model and samples from patients with MDD. METHODS: We used chronic ultra-mildly stressed mice that were untreated or treated with imipramine as mouse models of depression and remission, respectively. We also made comparisons between samples from depressed and remitted patients with MDD. Protein glycosylation was analyzed using a lectin microarray that included 45 lectins with binding affinities for various glycan structures. RESULTS: Sia-alpha2-6Gal/GalNAc was a commonly altered glycan structure in both depression model mice and patients with MDD. Moreover, the expression of ST6GALNAC2 was decreased in leukocytes from patients with MDD. LIMITATIONS: Our study samples were small and we did not identify specific alpha2-6Gal/GalNAc-sialylated proteins. CONCLUSIONS: The glycan structure Sia-alpha2-6GalNAc in plasma protein and ST6GALNAC2 expression in peripheral leukocytes may have utility as candidate biomarkers for the clinical diagnosis and monitoring of MDD.


Subject(s)
Biomarkers/blood , Depression/blood , Depressive Disorder, Major/blood , Disease Models, Animal , Sialyltransferases/blood , Animals , Depression/diagnosis , Depressive Disorder, Major/diagnosis , Female , Gene Expression/physiology , Genetic Markers , Glycosylation , Humans , Lectins/chemistry , Male , Mice , Mice, Inbred BALB C , Middle Aged , Real-Time Polymerase Chain Reaction , Sialyltransferases/genetics
4.
Front Aging Neurosci ; 9: 236, 2017.
Article in English | MEDLINE | ID: mdl-28824410

ABSTRACT

The dorsal raphe nucleus (DRN) has been repeatedly implicated as having a significant relationship with depression, along with its serotoninergic innervation. However, functional connectivity of the DRN in depression is not well understood. The current study aimed to isolate functional connectivity of the DRN distinct in later life depression (LLD) compared to a healthy age-matched population. Resting state functional magnetic resonance imaging (rsfMRI) data from 95 participants (33 LLD and 62 healthy) were collected to examine functional connectivity from the DRN to the whole brain in voxel-wise fashion. The posterior cingulate cortex (PCC) bilaterally showed significantly smaller connectivity in the LLD group than the control group. The DRN to PCC connectivity did not show any association with the depressive status. The findings implicate that the LLD involves disruption of serotoninergic input to the PCC, which has been suggested to be a part of the reduced default mode network in depression.

5.
Sci Rep ; 7(1): 3044, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596527

ABSTRACT

The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.


Subject(s)
Depression/genetics , Histones/genetics , Transcriptome , Aged , Animals , Female , Gene Expression Profiling , Histones/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged
6.
PLoS One ; 11(12): e0168493, 2016.
Article in English | MEDLINE | ID: mdl-28030612

ABSTRACT

Little is known about disorder-specific biomarkers of bipolar disorder (BD) and major depressive disorder (MDD). Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs) of individuals with BD), MDD group (17 patients with MDD, 17 FDRs of individuals with MDD), and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT), respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM) volume of the anterior cingulate cortex (ACC; p = 0.01) and left insula (p < 0.01). FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01), and patients with BD showed significantly smaller ACC (p < 0.01) and left insular GM volume (p < 0.01) than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05). Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.


Subject(s)
Bipolar Disorder/pathology , Brain/pathology , Cognition Disorders/epidemiology , Depressive Disorder, Major/pathology , Endophenotypes , Bipolar Disorder/metabolism , Brain/metabolism , Case-Control Studies , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Depressive Disorder, Major/metabolism , Female , Gray Matter/metabolism , Gray Matter/pathology , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology , Humans , Image Processing, Computer-Assisted , Japan/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , Prevalence
7.
J Affect Disord ; 204: 112-9, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27344619

ABSTRACT

BACKGROUND: Depression in old age is an increasing contributor to poor health and accompanying health care costs. Although there is an abundance of literature on later-life depression (LLD), the neural correlates have not been clarified. The aim of this study was to determine whether patients with LLD show abnormal gray matter volume (GMV) and white matter integrity by using multiple image analysis methods. METHODS: The study included 45 patients with LLD and 61 healthy participants who were matched for age, sex, years of education, and vascular risk factors. GMV was examined using voxel-based morphometry, while the white matter integrity was determined by tract-based spatial statistics and tract-specific analysis, which were obtained from high-resolution magnetic resonance images. RESULTS: Patients with LLD showed significantly less GMV in the orbitofrontal cortex, anterior cingulate, insula, amygdala, and temporal regions, as well as higher fractional anisotropy in the uncinate fasciculus, compared with healthy participants. Patients with LLD who had reduced orbitofrontal and insular GMV had more severe clinical variables. The reduced orbitofrontal GMV was associated with higher fractional anisotropy in the uncinate fasciculus. LIMITATION: The effects of medication should also be considered when interpreting the results of this study. CONCLUSION: Our results suggest that regional GMV is linked to white matter integrity of the uncinate fasciculus in the orbitomedial prefrontal limbic network, and the disruption of this network may be involved in the pathophysiology of LLD.


Subject(s)
Depression/pathology , Gray Matter/pathology , Prefrontal Cortex/pathology , White Matter/pathology , Aged , Amygdala/pathology , Case-Control Studies , Depressive Disorder/pathology , Diffusion Tensor Imaging , Female , Gyrus Cinguli/pathology , Humans , Male
8.
Schizophr Res ; 170(1): 109-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26612087

ABSTRACT

Although patients with schizophrenia demonstrate abnormal processing of emotional face recognition, the neural substrates underlying this process remain unclear. We previously showed abnormal fronto-temporal function during facial expression of emotions, and cognitive inhibition in patients with schizophrenia using functional near-infrared spectroscopy (fNIRS). The aim of the current study was to use fNIRS to identify which brain regions involved in recognizing emotional faces are impaired in patients with schizophrenia, and to determine the neural substrates underlying the response to emotional facial expressions per se, and to facial expressions with cognitive inhibition. We recruited 19 patients with schizophrenia and 19 healthy controls, statistically matched on age, sex, and premorbid IQ. Brain function was measured by fNIRS during emotional face assessment and face identification tasks. Patients with schizophrenia showed lower activation of the right precentral and inferior frontal areas during the emotional face task compared to controls. Further, patients with schizophrenia were slower and less accurate in completing tasks compared to healthy participants. Decreasing performance was associated with increasing severity of the disease. Our present and prior studies suggest that the impaired behavioral performance in schizophrenia is associated with different mechanisms for processing emotional facial expressions versus facial expressions combined with cognitive inhibition.


Subject(s)
Facial Recognition/physiology , Prefrontal Cortex/metabolism , Schizophrenia/metabolism , Adult , Emotions/physiology , Female , Humans , Male , Neuropsychological Tests , Photic Stimulation , Reaction Time , Spectroscopy, Near-Infrared
9.
Schizophr Res ; 162(1-3): 196-204, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25595654

ABSTRACT

INTRODUCTION: Patients with schizophrenia (SZ) have deficits of facial emotion processing and cognitive inhibition, but the brain pathophysiology underlying these deficits and their interaction are not clearly understood. We tested brain activity during an emotional face go/no-go task that requires rapid executive control affected by emotional stimuli in patients with SZ using functional near-infrared spectroscopy (fNIRS). METHODS: Twenty-five patients with SZ and 28 healthy control subjects were studied. We evaluated behavioral performance and used fNIRS to measure oxygenated hemoglobin concentration changes in fronto-temporal areas during the emotional go/no-go task with emotional and non-emotional blocks. RESULTS: Patients with SZ made more errors and had longer reaction times in both test blocks compared with healthy subjects. Significantly greater activation in the inferior, superior, middle, and orbital frontal regions were observed in healthy subjects during the emotional go/no-go block compared to the non-emotional go/no-go block, but this difference was not observed in patients with SZ. Relative to healthy subjects, patients with SZ showed less activation in the superior and orbital frontal and middle temporal regions during the emotional go/no-go block. DISCUSSION: Our results suggest that fronto-temporal dysfunction in patients with SZ is due to an interaction between abnormal processing of emotional facial expressions with negative valence and cognitive inhibition, especially during the rapid selection of rule-based associations that override automatic emotional response tendencies. They indicate that fronto-temporal dysfunction is involved in the pathophysiology of emotional-cognitive deficits in patients with SZ.


Subject(s)
Brain/physiopathology , Cognition/physiology , Emotions/physiology , Inhibition, Psychological , Schizophrenia/physiopathology , Schizophrenic Psychology , Adult , Female , Humans , Male , Neuropsychological Tests , Oxyhemoglobins/metabolism , Spectroscopy, Near-Infrared , Visual Perception/physiology
10.
Neuropsychobiology ; 70(3): 142-51, 2014.
Article in English | MEDLINE | ID: mdl-25358262

ABSTRACT

The differences in clinical characteristics between late- (LOS) and early-onset schizophrenia (EOS) are well documented. However, very little is known about the neural mechanisms underlying these differences. Here, we compared morphometric abnormalities between patients with EOS and those with LOS. A total of 22 patients with LOS, 24 patients with EOS and 41 healthy control subjects were included in this magnetic resonance imaging study. Brain images were analyzed using DARTEL preprocessing for voxel-based morphometry in SPM8. We tested a main effect of diagnosis in the whole-brain analysis and compared the results among the three groups. We also carried out correlation analyses between regional volumes and clinical variables. Patients with LOS showed larger gray matter (GM) volume of the left precuneus compared with healthy subjects and patients with EOS. Patients with LOS and EOS showed decreased GM volumes in the right insula, left superior temporal gyrus and left orbitofrontal gyrus compared with healthy subjects. A longer duration of illness was associated with reduced GM volume in the temporal pole in patients with EOS. Our findings may help improve our understanding of schizophrenia pathophysiology and shed light on the different and shared neurobiological underpinnings of LOS and EOS.


Subject(s)
Brain/pathology , Schizophrenia/pathology , Adult , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
11.
Neuroimage ; 85 Pt 1: 489-97, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23643923

ABSTRACT

Abnormal emotional processing is involved in the pathophysiology of bipolar disorder (BD) and major depressive disorder (MDD). However, whether the neural mechanism underlying this deficit is a trait characteristic of BD and MDD is unclear. The aim of this study was to elucidate the similarities and differences in processing of emotional stimuli between patients with BD and MDD in remission, using functional near-infrared spectroscopy (fNIRS). Thirty-two patients (16 with BD and 16 with MDD) and 20 healthy control subjects matched for age, sex, handedness, and years of education were included. An emotional Stroop task, including happy, sad, and threat words, was used. The relative oxygenated and deoxygenated hemoglobin concentration ([oxy-Hb] and [deoxy-Hb]) changes in the frontal region were measured using 52-channels of NIRS. During the threat task, compared to healthy control subjects, patients with BD showed significantly increased [oxy-Hb] in the left inferior frontal region whereas patients with MDD showed significantly increased [oxy-Hb] in the left middle frontal region. During the happy task, compared to healthy control subjects, patients with BD showed significantly decreased [oxy-Hb] in the middle frontal region in both hemispheres. Moreover, patients with BD exhibited decreased [oxy-Hb] and increased [deoxy-Hb] in the superior frontal and middle frontal regions compared to MDD in response to the happy stimulus. No significant differences in [oxy-Hb] or [deoxy-Hb] were seen between the groups during the sad task. These results suggest that abnormal neural responses to emotional stimuli in patients with mood disorders in remission may be a trait characteristic, that negative emotional stimuli are associated with similar prefrontal responses, and that positive emotional stimuli are associated with different prefrontal responses in patients with BD and MDD. These findings indicate that different neural circuits play a role in emotional processing in BD and MDD; this may aid the elucidation of the pathophysiology of these two disorders.


Subject(s)
Bipolar Disorder/physiopathology , Bipolar Disorder/psychology , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Emotions/physiology , Prefrontal Cortex/physiopathology , Adult , Behavior , Brain Mapping , Female , Functional Neuroimaging , Hemoglobins/analysis , Hemoglobins/metabolism , Humans , Male , Middle Aged , Psychomotor Performance/physiology , Reaction Time/physiology , Spectroscopy, Near-Infrared , Stroop Test
12.
Article in English | MEDLINE | ID: mdl-24076064

ABSTRACT

BACKGROUND: Reduced motivation and blunted decision-making are key features of major depressive disorder (MDD). Patients with MDD show abnormal decision-making when given negative feedback regarding a reward. The brain mechanisms underpinning this behavior remain unclear. In the present study, we examined the association between rapid decision-making with negative feedback and brain volume in MDD. METHODS: Thirty-six patients with MDD and 54 age-, sex- and IQ-matched healthy subjects were studied. Subjects performed a rapid decision-making monetary task in which participants could make high- or low-risk choices. We compared between the 2 groups the probability that a high-risk choice followed negative feedback. In addition, we used voxel-based morphometry (VBM) to compare between group differences in gray matter volume, and the correlation between the probability for high-risk choices and brain volume. RESULTS: Compared to the healthy group, the MDD group showed significantly lower probabilities for high-risk choices following negative feedback. VBM analysis revealed that the MDD group had less gray matter volume in the right medial prefrontal cortex and orbitofrontal cortex (OFC) compared to the healthy group. The right OFC volume was negatively correlated with the probability that a high-risk choice followed negative feedback in patients with MDD. We did not observe these trends in healthy subjects. CONCLUSIONS: Patients with MDD show reduced motivation for monetary incentives when they were required to make rapid decisions following negative feedback. We observed a correlation between this reduced motivation and gray matter volume in the medial and ventral prefrontal cortex, which suggests that these brain regions are likely involved in the pathophysiology of aberrant decision-making in MDD.


Subject(s)
Cognition Disorders/etiology , Decision Making/physiology , Depressive Disorder, Major/complications , Depressive Disorder, Major/pathology , Prefrontal Cortex/pathology , Adult , Analysis of Variance , Case-Control Studies , Choice Behavior/physiology , Female , Games, Experimental , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged
13.
Brain Res ; 1473: 185-92, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22819931

ABSTRACT

Anhedonic symptoms, which include loss of pleasure, appetite and motivation, are key symptoms of major depressive disorder (MDD) and are thought to depend on a neural circuit of the mesolimbic system. The neuropeptide ghrelin plays a crucial role in appetite and reward. Little is known, however, about the role of ghrelin in MDD. We examined the association between morphometric change and plasma ghrelin levels in patients with MDD. Twenty-four patients with MDD and 24 healthy control subjects were studied. Plasma concentration of acylated ghrelin was measured after a period of fasting. Using voxel-based morphometry, we found a main effect of ghrelin on the volume of several brain regions. We then compared these regional volumes in patients with MDD versus healthy subjects. We also compared brain volumes between the two groups, controlling for ghrelin level. There was no significant difference in plasma acylated ghrelin level between patients with MDD and healthy subjects. In the MDD group, ghrelin levels positively correlated with the severity of reduced appetite. Ghrelin levels negatively correlated with gray matter volume of the ventral tegmental area (VTA) in the total sample. The patients with MDD showed significantly smaller VTA gray matter volume compared to healthy subjects. Controlling for the plasma acylated ghrelin level, patients with MDD showed significantly smaller gray matter volume of right substantia nigra compared to healthy subjects. Our findings suggest that plasma acylated ghrelin is associated with neural abnormalities of the pleasure/reward system and may be involved in the pathophysiology of MDD.


Subject(s)
Brain/pathology , Depressive Disorder, Major/blood , Depressive Disorder, Major/pathology , Ghrelin/blood , Acetylation , Brain/physiopathology , Depressive Disorder, Major/physiopathology , Female , Humans , Male , Middle Aged , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...