Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Anal Chem ; 96(35): 14274-14282, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39159408

ABSTRACT

The comprehensive understanding of the orientation of antibodies on a solid surface is crucial for affinity-based sensing mechanisms. In this study, we demonstrated that the orientation of primary antibodies modified on carboxy-functionalized polystyrene (PS) particles can be analyzed using zeta potential behavior at different pH based on the combined Gouy-Chapman-Stern model and the acid dissociation of carboxy groups and antibodies. We observed that at low surface concentrations of the primary antibody, a side-on orientation was predominant. However, at higher concentrations (approximately 30000 antibodies per PS particle), the orientation shifted to an end-on type due to steric hindrance. Furthermore, the reaction mechanism of the secondary antibody exhibited pH-dependent behavior. At pH > 7, the zeta potential changes were attributed to the antibody-antibody reaction, whereas at pH < 7, adsorption of secondary antibody onto the PS particle was observed, leading to a change in the orientation of the primary antibody modified on the PS particle to an end-on type. The change in zeta potential due to secondary antibody binding indicated a detection limit of 37000 antibodies per PS particle. As a result, we revealed that the analysis of zeta potential behavior enables the evaluation of antibody orientation and the detection of zeptomole order antibodies. This study represents the first demonstration of this capability. We anticipate that the present concept and results will broaden the quantitative application of zeta potential measurements and have significant implications for research areas, including physical chemistry and analytical chemistry.


Subject(s)
Antibodies , Polystyrenes , Polystyrenes/chemistry , Hydrogen-Ion Concentration , Antibodies/chemistry , Antibodies/immunology , Surface Properties , Particle Size
2.
Anal Chim Acta ; 1318: 342933, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067936

ABSTRACT

BACKGROUND: The aggregation of isotropic particles through interparticle reactions poses a challenge in control due to the ability of all surfaces to bind to each other, rendering the quantitative detection of such interparticle reactions based on particle size difficult. Here, we proposed a novel detection scheme for DNA utilizing an assembly of Janus particles (JPs) employing dynamic light scattering (DLS). DNA molecules are tethered on one hemisphere of the JP, while the other hemisphere retains its hydrophobic properties. RESULTS: Aggregation of JPs was induced by the sandwich hybridization of target DNA between them. The assembly of JPs was effectively monitored by the changes in hydrodynamic diameter detected by DLS, revealing that aggregation peaks at 2-3 particles and further reaction was hindered due to the inability of one hemisphere of the JP to interact with another JP. The target DNA demonstrated detectability at concentrations as low as several tens of pM to several nM using a digital sensing method. The two types of target DNA, such as simple (14 base pairs) and HIV-2 specific sequences (20 base pairs) were detectable at nM and pM levels, respectively. Moreover, we substantiated the robustness of our detection scheme through stoichiometric calculations based on an equilibrium model. The present detection mechanism was well explained based on the binding affinity of DNA hybridization. SIGNIFICANCE: This detection method harnesses the anisotropic nature of JPs and represents the first detection approach based on aggregation. By altering the modification molecules on JPs to match target molecules, such as proteins and organic compounds, a wide range of versatile molecules can be detected using this scheme with high sensitivity. This underscores the broad applicability of the present method.


Subject(s)
DNA , Dynamic Light Scattering , DNA/chemistry , Particle Size , Nucleic Acid Hybridization , Biosensing Techniques/methods
3.
Langmuir ; 40(28): 14303-14310, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958592

ABSTRACT

Understanding mass transfer kinetics within individual porous particles is crucial for theoretically explaining the retention and elution behaviors in chromatography and drug delivery. Using laser trapping and fluorescence microspectroscopy, we investigated the diffusion mechanism of coumarin 102 (C102) into single octadecylsilyl particle in acetonitrile (ACN)/water, N,N-dimethylformamide (DMF)/water, and 1-butanol (BuOH)/water solutions. The intraparticle diffusion behavior of C102 was evaluated using the spherical diffusion equation, allowing us to determine the intraparticle diffusion coefficients (Dintra): (8-10) × 10-9 cm2 s-1 for ACN, (10-16) × 10-9 cm2 s-1 for DMF, and (4-6) × 10-9 cm2 s-1 for BuOH. The obtained Dintra values were further analyzed using a pore and surface diffusion model. Thus, we revealed that the diffusion mechanism of C102 differed depending on the organic solvent: surface diffusion for ACN and DMF and pore and surface diffusions for BuOH were observed. This difference is attributed to the formation of a concentrated liquid phase of ACN and DMF at the interface of the alkyl chain and the bulk solution in the pore.

4.
Anal Sci ; 40(8): 1561-1567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727929

ABSTRACT

We investigated the diffusion behavior of rhodamine 6G (Rh6G) within single octadecylsilyl-functionalized (ODS) silica particle in an acetonitrile (ACN)/water system using fluorescence correlation spectroscopy (FCS). FCS measurements were conducted at the center of the particle to exclusively determine the intraparticle diffusion coefficient (D). The obtained D values were analyzed based on a pore and surface diffusion model, the results of which indicate that surface diffusion primarily governs the intraparticle diffusion of Rh6G. Furthermore, an increase in the concentration of ACN (CACN) resulted in a corresponding increase in the surface diffusion coefficient (Ds), whereas the addition of NaCl did not significantly affect the Ds values. We attributed this dependence of Ds to the dielectric constant change in the interfacial liquid phase formed on the ODS layer. Specially, Ds values of (4.0 ± 0.5) × 10-7, (7.7 ± 1.1) × 10-7, (1.0 ± 0.3) × 10-6, and (1.1 ± 0.2) × 10-6 cm2 s-1 were obtained for CACN = 20, 30, 40, and 50 vol%, respectively. We anticipate that this approach will contribute to advancing research on intraparticle mass transfer mechanisms.

5.
Anal Sci ; 40(8): 1545-1551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38652419

ABSTRACT

This study elucidates the mass transfer mechanism of myoglobin (Mb) within a single silica particle with a 50 nm pore size at various pH levels (6.0, 6.5, 6.8, and 7.0). Investigation of Mb distribution ratio (R) and distribution kinetics was conducted using absorption microspectroscopy. The highest R was observed at pH 6.8, near the isoelectric point of Mb, as the electrostatic repulsion between Mb molecules on the silica surface decreased. The time-course absorbance of Mb in the silica particle was rigorously analyzed based on a first-order reaction, yielding the intraparticle diffusion coefficient of Mb (Dp). Dp-(1 + R)-1 plots at different pH values were evaluated using the pore and surface diffusion model. Consequently, we found that at pH 6.0, Mb diffused in the silica particle exclusively through surface diffusion, whereas pore diffusion made a more substantial contribution at higher pH. Furthermore, we demonstrated that Mb diffusion was hindered by slow desorption, associated with the electrostatic charge of Mb. This comprehensive analysis provides insights into the diffusion mechanisms of Mb at acidic, neutral, and basic pH conditions.

6.
Langmuir ; 40(16): 8645-8653, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608006

ABSTRACT

We demonstrated for the first time that interfacial tension measurements can be used to evaluate the kinetics of the solvent extraction of metal ions. The Eu(III) extraction mechanism in the nitrate ion/tributyl phosphate (TBP) system was investigated on the basis of dynamic interfacial tension. Interestingly, the interfacial tension of the TBP droplet (γ) increased with Eu(III) extraction. This behavior can be explained by the electrocapillary effect. The time dependence of γ was kinetically analyzed, and we demonstrated that the rate-determining process was the interfacial reaction of Eu(III). Furthermore, the dependence of the mass transfer rate constant upon the concentration of the nitrate ions revealed that two nitrate ions were involved in the interfacial reaction during Eu(III) extraction. However, no change in the rate constant upon TBP concentration was observed, because the change in the TBP concentration did not affect the electrocapillary effect. We determined the forward and backward reaction rates to be k1 = (1.5 ± 0.7) × 10-6 m M-2 s-1 and k-MT = (6.9 ± 3.9) × 10-7 m s-1. Therefore, for the first time, we demonstrated that dynamic interfacial tension, which is involved in the electrocapillary effect, can be used to elucidate the kinetics of Eu(III) extraction. We expect that this study will attract the attention of researchers in several fields, including physical and analytical chemistry.

7.
Talanta ; 273: 125925, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38527412

ABSTRACT

In the present study, we propose a scheme for detecting H2O2 by using horseradish peroxidase (HRP) adsorbed onto single silica particles and fluorescence microspectroscopy. When the silica particles were immersed in an HRP solution, the HRP concentration in the silica particles increased by a factor of 690 compared to that in the bulk aqueous solution because HRP was adsorbed on the silica surface. When a single particle containing HRP was added to a mixed solution of H2O2 and Amplex Red, fluorescence from resorufin, which was produced by the reaction of HRP, H2O2, and Amplex Red, was observed. The fluorescence from the resorufin in the particles increased after a single particle was added to the solution, and the release of resorufin was observed. As the concentration of H2O2 (CH2O2) decreased, the time it takes for fluorescence intensity to reach its maximum was shorter. The detection limit for H2O2 in the present system was 980 nM. The reaction behavior of a single silica particle was evaluated using a spherical diffusion model, which explains the approximate concentration change of resorufin in the silica particle. The proposed method has the advantages of simple sample preparation and detection, low sample consumption, and a short detection time.


Subject(s)
Hydrogen Peroxide , Silicon Dioxide , Hydrogen Peroxide/chemistry , Horseradish Peroxidase/chemistry , Fluorescence , Kinetics
8.
Phys Chem Chem Phys ; 26(6): 5615-5620, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38288480

ABSTRACT

In a molecular crowding environment, the kinetics and thermodynamics differ from those in a diluted solution. Although the molecular crowding effect has been extensively investigated, its fundamental kinetics and thermodynamics remain unclear. In this study, we investigated the change in the rate constant (k) of the Hantzch pyridine reaction in a molecular crowding environment using polyethylene glycol (PEG). While the k value increased to a PEG concentration (CPEG) of 10 vol%, a decreasing trend was observed for CPEG > 20 vol%. This intriguing behavior was analyzed based on the increase in reactant activity due to volume exclusion and the decrease in water activity due to osmotic pressure. Volume exclusion and osmotic pressure had opposing effects on the reaction, which were positive for volume exclusion and negative for osmotic pressure. We found that k decreased when the negative effect of the osmotic pressure surpassed the volume exclusion effect.

9.
Anal Sci ; 40(1): 93-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814176

ABSTRACT

A well-known solvatochromic dye, Reichardt's dye (R-dye), was used to evaluate the hydrophobicity of alkyl-group-functionalized silica particles (ASPs) with different chain lengths. The absorption spectra of R-dye were measured in a single ASP in a mixed solution of water and an organic solvent (methanol (MeOH), ethanol (EtOH), acetonitrile (ACN), tetrahydrofuran (THF), or N,N-dimethylformamide (DMF)) using absorption microspectroscopy. The polarity parameter in the ASPs (ET), determined by the absorption maximum, was observed to be smaller than those in bulk solutions, indicating that R-dye was present in a more hydrophobic environment. In EtOH, THF, and DMF, R-dye was distributed within the alkyl chain layer including the organic solvent. An increase in the organic solvent content of the bulk solution led to a higher organic solvent concentration in the alkyl chain layer, resulting in a decrease in ET. In MeOH and ACN, the R-dye was distributed within the alkyl chain layer and concentrated phase. Moreover, with the increase in the organic molecule content, the distribution of R-dye in the concentrated phase became dominant in MeOH and ACN system, leading to an increase in the ET value. The findings presented in this paper are expected to attract the attention of a wide range of researchers in chromatography.

10.
Anal Sci ; 40(2): 347-352, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044377

ABSTRACT

The Eu(III) distribution mechanism in single extractant-impregnated polymer-layered silica particle in a complex solution containing multiple lanthanide ions was investigated using fluorescence microspectroscopy, which was compared with the single-ion distribution system. The rate-determining step of the Eu(III) distribution was the reaction of Eu(III) with the two extractant molecules in the particle. The distribution mechanism and rate constants obtained in the multiple lanthanide ions-distribution system agreed with those of the single-ion distribution system.

11.
Anal Sci ; 39(11): 1929-1936, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37555916

ABSTRACT

A microcapillary manipulation system combined with fluorescence microspectroscopy enabled us to analyze mass transfer in a single particle. In this study, we revealed the Eu(III) distribution in a single diglycolamide-derivative extractant (TODGA)-impregnated polymer-coated silica particle. The reaction of Eu(III) with two TODGA molecules in the polymer layer was the rate-limiting process, which was revealed by the relationship between the rate constants (k1 and k-1) and concentrations of Eu(III) and HNO3. The decrease in the crosslinking degree of the polymer layer caused an increase in only k-1. This indicates that hydrophilic environments at lower crosslinking degrees enhance the stability of the charged Eu(III) species such as Eu3+, Eu(NO3)2+, and Eu(NO3)2+.

12.
Langmuir ; 39(32): 11329-11336, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37523758

ABSTRACT

This study investigated the pore size dependence of the mass transfer of zinc myoglobin (ZnMb) in a single mesoporous silica particle through confocal fluorescence microspectroscopy. The ZnMb's fluorescence depth profile in the particle was analyzed by a spherical diffusion model, and the intraparticle diffusion coefficient was obtained. The intraparticle diffusion coefficient in the silica particle with various pore sizes (10, 15, 30, and 50 nm) was furthermore analyzed based on a pore and surface diffusion model. Although the mass transfer mechanism in all silica particles followed the pore and surface diffusion model, the adsorption and desorption of ZnMb affected the mass transfer depending on the pore size. The influence of the slow desorption of ZnMb became pronounced for large pore sizes (30 and 50 nm), which was revealed by simulation using a diffusion equation combined with the adsorption-desorption kinetics. The distribution of ZnMb was suppressed in small pore sizes (10 and 15 nm) owing to the adsorption of ZnMb onto the entrance of the pore. Thus, we revealed the mass transfer mechanism of ZnMb in the silica particle with different pore sizes.

13.
Analyst ; 147(21): 4735-4738, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36197128

ABSTRACT

In this study, we propose a semi-quantification method based on breaking bonds between microparticles and glass plates in a combined acoustic-gravitational field. The semi-quantified binding constant values for BSA-ibuprofen, BSA-ciprofloxacin, ConA-glycogen, ConA-mannan, and BSA-naproxen calculated using this method were 7.5 × 103, 1.6 × 104, 2.3 × 105, 2.4 × 106 and 9.0 × 107 M-1, respectively, which were in concord with the reported values.


Subject(s)
Ibuprofen , Naproxen , Naproxen/chemistry , Ibuprofen/chemistry , Mannans , Acoustics , Ciprofloxacin , Glycogen , Serum Albumin, Bovine/chemistry
14.
Anal Sci ; 38(12): 1505-1512, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36050568

ABSTRACT

In a molecular crowding environment, different thermodynamics is often observed in a dilute solution. One such example is the promotion of the formation of amyloids, which are causal agents of Alzheimer's disease. Although a considerable number of molecular crowding studies have been reported, its effect remains unclear. In this study, we investigated a J-aggregation of a porphyrin derivative, 5, 10, 15, 20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), in a molecular crowding environment simulated by dextran (Dex) in HClO4, HCl, and NaCl solutions. The changes in the number of monomers in the J-aggregate (n) with the concentration of Dex (CDex) depended on the type of solution. No change in n was observed in the NaCl solution, which indicated that the Dex solution did not affect the J-aggregation because of the ionic strength effect. In the HCl solution, the aggregation behavior changed with the pH. Further, at a low pH, the electrostatic interactions promoted J-aggregation by the volume exclusion of Dex, while the aggregation was suppressed at a high pH owing to steric hindrance. A different aggregation mechanism, involving the hydrogen bonding between NH in the center of the TPPS macrocyclic frame and the SO3H and ClO4- functional groups, was responsible for the J-aggregation in the HClO4 solution. Moreover, the n value increased owing to the volume exclusion effect. We expect that this study will be useful for further elucidation of the molecular crowding effect.


Subject(s)
Porphyrins , Sodium Chloride , Sodium Chloride/chemistry , Dextrans , Porphyrins/chemistry , Thermodynamics
15.
Biophys J ; 121(14): 2767-2780, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35689380

ABSTRACT

Hemoglobins M (Hbs M) are human hemoglobin variants in which either the α or ß subunit contains a ferric heme in the α2ß2 tetramer. Though the ferric subunit cannot bind O2, it regulates O2 affinity of its counterpart ferrous subunit. We have investigated resonance Raman spectra of two Hbs, M Iwate (α87His → tyrosine [Tyr]) and M Boston (α58His → Tyr), having tyrosine as a heme axial ligand at proximal and distal positions, respectively, that exhibit unassigned resonance Raman bands arising from ferric (not ferrous) hemes at 899 and 876 cm-1. Our quantum chemical calculations using density functional theory on Fe-porphyrin models with p-cresol and/or 4-methylimidazole showed that the unassigned bands correspond to the breathing-like modes of Fe3+-bound Tyr and are sensitive to the Fe-O-C(Tyr) angle. Based on the frequencies of the Raman bands, the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston were predicted to be 153.5° and 129.2°, respectively. Consistent with this prediction, x-ray crystallographic analysis showed that the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston in the T quaternary structure were 153.6° and 134.6°, respectively. It also showed a similar Fe-O bond length (1.96 and 1.97 Å) and different tilting angles.


Subject(s)
Hemoglobin M , Crystallography , Density Functional Theory , Heme/chemistry , Hemoglobin M/chemistry , Hemoglobin M/metabolism , Humans , Spectrum Analysis, Raman , Tyrosine/chemistry , Vibration
16.
Langmuir ; 38(27): 8462-8468, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35767692

ABSTRACT

In this study, we investigated the distribution behavior of single-stranded DNA molecules with 20 bases in silica particles (particle size: ∼30 µm) using confocal fluorescence microspectroscopy. The distribution kinetics was investigated under various conditions, such as the type of base (adenine, thymine, guanine, and cytosine), pore size of the particle (30 and 50 nm), and salt concentration (100, 200, and 500 mM), which changed the distribution behavior. At high salt concentrations, we observed sigmoidal kinetic behavior, which does not occur in the general distribution of small organic molecules but is often observed in protein aggregation and nuclear growth. An analytical model based on DNA aggregation explained the sigmoidal distribution behavior well, and this model also worked well when the number of DNA molecules involved in DNA aggregation was greater than two. The intraparticle diffusion of DNA molecules was analyzed using the pore and surface diffusion model. As a result, the intraparticle diffusion of DNA aggregates mainly occurs according to surface diffusion, and the surface diffusion coefficient has the same value ((2.4-6.7) × 10-9 cm2 s-1) independent of the pore size and type of base.


Subject(s)
DNA, Single-Stranded , Silicon Dioxide , DNA , Diffusion , Kinetics , Silicon Dioxide/chemistry
17.
Anal Sci ; 38(7): 955-961, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35551644

ABSTRACT

In this study, we reveal an Eu(III) extraction mechanism at the interface between HNO3 and tributyl phosphate (TBP) solutions using fluorescence microspectroscopy. The mass transfer rate constant at the interface is obtained from the analysis of fluorescence intensity changes during the forward and backward extractions at various HNO3 and TBP concentrations to investigate the reaction mechanism. This result indicates that one nitrate ion reacts with Eu(III) at the interface, whereas TBP molecules are not involved in the interfacial reaction, which is different from the results obtained using the NaNO3 solution in our previous study. We demonstrate that the chemical species of Eu(III) complex with nitrate ion and TBP in the aqueous solution play an important role for the extraction mechanism. The rate constants of the interfacial reactions in the forward and backward extractions are (4.0-5.0) × 10-7 m M-1 s-1 and (3.2-3.3) × 10-6 m s-1, respectively. We expect that our revealed mechanism provides useful and fundamental knowledge for actual solvent extraction.


Subject(s)
Nitrates , Organophosphates , Fluorescence , Kinetics , Organophosphates/chemistry , Water
18.
Anal Chem ; 94(16): 6304-6310, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35426673

ABSTRACT

The zeta potential (ζ) of a particle is a surface charge density (σ)-dependent parameter. If a change in σ can be induced by surface modification, the number of molecules modified on the particle can be detected as a measurable change in ζ. In this study, we demonstrate protein detection at zmol or pM levels (bovine serum albumin (BSA), myoglobin (Mb), and lysozyme (Lyz)) on carboxy-functionalized polystyrene (PS) microparticles using the ζ change. Protein modification of the PS particles changes σ because the negatively charged carboxy group is used for protein binding, and proteins also have charged amino acids. The pH dependence of ζ for the protein-modified particles at 4 < pH < 10 is well-explained using the acid dissociation of the acidic and basic amino acids and the Gouy-Chapman-Stern model. An increase in the binding number of proteins per single PS particle (npro/PS) leads to a decrease in ζ, which is consistent with the results estimated by the proposed model. The detection limits of nBSA/PS, nMb/PS, and nLyz/PS are 1.17 × 104, 1.22 × 104, and 1.20 × 104 at pH 8.52, respectively, which means that the concentration-based detection limits are 722, 376, and 371 pM, respectively. We expect that the present method will be a strategy for the detection of molecules on particles.


Subject(s)
Polystyrenes , Serum Albumin, Bovine , Adsorption , Myoglobin/metabolism , Polystyrenes/chemistry , Protein Binding , Serum Albumin, Bovine/chemistry , Surface Properties
19.
Talanta ; 238(Pt 2): 123042, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801899

ABSTRACT

In this study, we propose a novel detection principle based on the dissociation of microparticles immobilized on a glass plate through weak hybridization involving 4-6 base pairs (bps) in a combined acoustic-gravitational field. Particle dissociation from the glass plate occurs when the resultant of the acoustic radiation force (Fac) and the sedimentation force (Fsed) exerted on the particle exceeds the binding force owing to the weak hybridization (Fbind). Because Fac and Fsed can be controlled by the microparticle density, and Fac is a function of the applied voltage to the transducer (V), an increase in V induces particle dissociation. The binding of gold nanoparticles (AuNPs) onto silica microparticles (SPs) resulting from the strong hybridization of 20 bps induces an increase in the density of SPs, leading to an increase in Fac and Fsed; consequently, the voltage V required for dissociation becomes lower than that required without AuNP binding. We demonstrate that the dependence of the binding number of AuNPs per SP on V follows the theoretical prediction. The binding of 7500 AuNPs per SP can be detected as a 10 V change in V. The present approach allows the detection of 2000 DNA molecules involved in the strong hybridization between AuNPs and SP.


Subject(s)
Gold , Metal Nanoparticles , Acoustics , DNA/genetics , Nucleic Acid Hybridization
20.
Langmuir ; 37(43): 12697-12704, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34672614

ABSTRACT

The adsorption/desorption mechanisms of biomolecules in porous materials have attracted significant attention because of their applications in many fields, including environmental, medical, and industrial sciences. Here, we employ confocal fluorescence microspectroscopy to reveal the diffusion behavior of zinc myoglobin (ZnMb, 4.4 nm × 4.4 nm × 2.5 nm) as a spherical protein in a single mesoporous silica particle (pore size of 15 nm). The measurement of the time course of the fluorescence depth profile of the particle reveals that intraparticle diffusion is the rate-limiting process of ZnMb in the particle. The diffusion coefficients of ZnMb in the particle for the distribution (Ddis) and release (Dre) processes are determined from the rate constants, e.g., Ddis = 1.65 × 10-10 cm2 s-1 and Dre = 3.68 × 10-10 cm2 s-1, for a 10 mM buffer solution. The obtained D values for various buffer concentrations are analyzed using the pore and surface diffusion model. Although surface diffusion is the main distribution process, the release process involves pore and surface diffusion, which have not been observed with small organic molecules; the mechanism of transfer of small molecules is pore diffusion alone. We demonstrate that the mass transfer kinetics of ZnMb in the silica particle can be explained well on the basis of pore and surface diffusion.


Subject(s)
Myoglobin , Zinc , Adsorption , Diffusion , Fluorescence , Kinetics , Particle Size , Porosity , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL