Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Cancer Sci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566304

ABSTRACT

ABCC3 (also known as MRP3) is an ATP binding cassette transporter for bile acids, whose expression is downregulated in colorectal cancer through the Wnt/ß-catenin signaling pathway. However, it remained unclear how downregulation of ABCC3 expression contributes to colorectal carcinogenesis. We explored the role of ABCC3 in the progression of colorectal cancer-in particular, focusing on the regulation of bile acid export. Gene expression analysis of colorectal adenoma isolated from familial adenomatous polyposis patients revealed that genes related to bile acid secretion including ABCC3 were downregulated as early as at the stage of adenoma formation. Knockdown or overexpression of ABCC3 increased or decreased intracellular concentration of deoxycholic acid, a secondary bile acid, respectively, in colorectal cancer cells. Forced expression of ABCC3 suppressed deoxycholic acid-induced activation of MAPK signaling. Finally, we found that nonsteroidal anti-inflammatory drugs increased ABCC3 expression in colorectal cancer cells, suggesting that ABCC3 could be one of the targets for therapeutic intervention of familial adenomatous polyposis. Our data thus suggest that downregulation of ABCC3 expression contributes to colorectal carcinogenesis through the regulation of intracellular accumulation of bile acids and activity of MAPK signaling.

2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673728

ABSTRACT

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Subject(s)
Basic-Leucine Zipper Transcription Factors , F-Box Proteins , Heme , Protein Serine-Threonine Kinases , Proteolysis , Receptors, Cytoplasmic and Nuclear , Humans , Heme/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , HEK293 Cells , Ubiquitination , Cell Line, Tumor , Lysosomes/metabolism , Autophagy , Proteasome Endopeptidase Complex/metabolism
3.
EMBO J ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605225

ABSTRACT

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.

4.
Ann Clin Transl Neurol ; 11(3): 577-592, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158701

ABSTRACT

OBJECTIVE: Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS: Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS: RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION: The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.


Subject(s)
Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Muscular Diseases , Humans , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Amyotrophic Lateral Sclerosis/genetics , Nuclear Pore/metabolism , Nuclear Pore/pathology , Muscle, Skeletal/metabolism , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Muscular Diseases/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
5.
Cancer Sci ; 114(11): 4286-4298, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688308

ABSTRACT

Expression of the gene for collagen XVII (COL17A1) in tumor tissue is positively or negatively associated with patient survival depending on cancer type. High COL17A1 expression is thus a favorable prognostic marker for breast cancer but unfavorable for pancreatic cancer. This study explored the effects of COL17A1 expression on pancreatic tumor growth and their underlying mechanisms. Analysis of published single-cell RNA-sequencing data for human pancreatic cancer tissue revealed that COL17A1 was expressed predominantly in cancer cells rather than surrounding stromal cells. Forced expression of COL17A1 did not substantially affect the proliferation rate of the mouse pancreatic cancer cell lines KPC and AK4.4 in vitro. However, in mouse homograft tumor models in which KPC or AK4.4 cells were injected into syngeneic C57BL/6 or FVB mice, respectively, COL17A1 expression promoted or suppressed tumor growth, respectively, suggesting that the effect of COL17A1 on tumor growth was influenced by the tumor microenvironment. RNA-sequencing analysis of tumor tissue revealed effects of COL17A1 on gene expression profiles (including the expression of genes related to cell proliferation, the immune response, Wnt signaling, and Hippo signaling) that differed between C57BL/6-KPC and FVB-AK4.4 tumors. Our data thus suggest that COL17A1 promotes or suppresses cancer progression in a manner dependent on the interaction of tumor cells with the tumor microenvironment.


Subject(s)
Pancreatic Neoplasms , Tumor Microenvironment , Mice , Animals , Humans , Tumor Microenvironment/genetics , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , RNA , Collagen Type XVII , Pancreatic Neoplasms
6.
iScience ; 26(8): 107267, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520695

ABSTRACT

Biological invasion refers to the introduction, spread, and establishment of non-native species in a novel habitat. The ways in which invasive species successfully colonize new and different environments remain a fundamental topic of research in ecology and evolutionary biology. Here, we investigated the genomic and transcriptomic characteristics of the red swamp crayfish (Procambarus clarkii), a widespread invader in freshwater environments. Targeting a recently colonized population in Sapporo, Japan that appears to have acquired a high degree of cold tolerance, RNA-seq analysis revealed differentially expressed genes in response to cold exposure, and those involved in protease inhibitors and cuticle development were considered top candidates. We also found remarkable duplications for these gene families during evolution and their concerted expression patterns, suggesting functional amplification against low temperatures. Our study thus provides clues to the unique genetic characteristics of P. clarkii, possibly related to cold adaptation.

7.
Brain Dev ; 45(9): 505-511, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37442734

ABSTRACT

Variants of SCN1A represent the archetypal channelopathy associated with several epilepsy syndromes. The clinical phenotypes have recently expanded from Dravet syndrome. CASE REPORT: We present a female patient with the de novo SCN1A missense variant, c.5340G > A (p. Met1780Ile). The patient had various clinical features with neonatal onset SCN1A epileptic encephalopathy, arthrogryposis multiplex congenita, thoracic hypoplasia, thoracic scoliosis, and hyperekplexia. CONCLUSION: Our findings are compatible with neonatal developmental and epileptic encephalopathy with movement disorders and arthrogryposis; the most severe phenotype probably caused by gain-of-function variant of SCN1A. The efficacy of sodium channel blocker was also discussed. Further exploration of the phenotype-genotype relationship of SCN1A variants may lead to better pharmacological treatments and family guidance.


Subject(s)
Arthrogryposis , Epilepsies, Myoclonic , Epileptic Syndromes , Movement Disorders , Female , Humans , Arthrogryposis/genetics , Epilepsies, Myoclonic/genetics , Mutation, Missense , Movement Disorders/genetics , Phenotype , NAV1.1 Voltage-Gated Sodium Channel/genetics , Mutation
8.
PLoS One ; 18(2): e0276838, 2023.
Article in English | MEDLINE | ID: mdl-36791055

ABSTRACT

A cyclin-dependent kinase (CDK) inhibitor, p57Kip2, is an important molecule involved in bone development; p57Kip2-deficient (p57-/-) mice display neonatal lethality resulting from abnormal bone formation and cleft palate. The modulator 1α,25-dihydroxyvitamin D3 (l,25-(OH)2VD3) has shown the potential to suppress the proliferation and induce the differentiation of normal and tumor cells. The current study assessed the role of p57Kip2 in the 1,25-(OH)2VD3-regulated differentiation of osteoblasts because p57Kip2 is associated with the vitamin D receptor (VDR). Additionally, 1,25-(OH)2VD3 treatment increased p57KIP2 expression and induced the colocalization of p57KIP2 with VDR in the osteoblast nucleus. Primary p57-/- osteoblasts exhibited higher proliferation rates with Cdk activation than p57+/+ cells. A lower level of nodule mineralization was observed in p57-/- osteoblasts than in p57+/+ cells. In p57+/+ osteoblasts, 1,25-(OH)2VD3 upregulated the p57Kip2 and opn mRNA expression levels, while the opn expression levels were significantly decreased in p57-/- cells. The osteoclastogenesis assay performed using bone marrow cocultured with 1,25-(OH)2VD3-treated osteoblasts revealed a decreased efficiency of 1,25-(OH)2VD3-stimulated osteoclastogenesis in p57-/- cells. Based on these results, p57Kip2 might function as a mediator of 1,25-(OH)2VD3 signaling, thereby enabling sufficient VDR activation for osteoblast maturation.


Subject(s)
Receptors, Calcitriol , Vitamin D , Animals , Mice , Cell Differentiation , Cell Nucleus/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Osteoblasts/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/metabolism
9.
Mol Neurobiol ; 60(2): 1083-1098, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414910

ABSTRACT

Schizophrenia presents clinical and biological differences between males and females. This study investigated transcriptional profiles in the dorsolateral prefrontal cortex (DLPFC) using postmortem data from the largest RNA-sequencing (RNA-seq) database on schizophrenic cases and controls. Data for 154 male and 113 female controls and 160 male and 93 female schizophrenic cases were obtained from the CommonMind Consortium. In the RNA-seq database, the principal component analysis showed that sex effects were small in schizophrenia. After we analyzed the impact of sex-specific differences on gene expression, the female group showed more significantly changed genes compared with the male group. Based on the gene ontology analysis, the female sex-specific genes that changed were overrepresented in the mitochondrion, ATP (phosphocreatine and adenosine triphosphate)-, and metal ion-binding relevant biological processes. An ingenuity pathway analysis revealed that the differentially expressed genes related to schizophrenia in the female group were involved in midbrain dopaminergic and γ-aminobutyric acid (GABA)-ergic neurons and microglia. We used methylated DNA-binding domain-sequencing analyses and microarray to investigate the DNA methylation that potentially impacts the sex differences in gene transcription using a maternal immune activation (MIA) murine model. Among the sex-specific positional genes related to schizophrenia in the PFC of female offspring from MIA, the changes in the methylation and transcriptional expression of loci ACSBG1 were validated in the females with schizophrenia in independent postmortem samples by real-time PCR and pyrosequencing. Our results reveal potential genetic risks in the DLPFC for the sex-dependent prevalence and symptomology of schizophrenia.


Subject(s)
Schizophrenia , Animals , Female , Humans , Male , Mice , Dorsolateral Prefrontal Cortex , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Sex Characteristics , Transcriptome/genetics
10.
Cell Death Differ ; 30(2): 442-456, 2023 02.
Article in English | MEDLINE | ID: mdl-36443441

ABSTRACT

Oncogenic KRAS is the key driver oncogene for several of the most aggressive human cancers. One key feature of oncogenic KRAS expression is an early increase in cellular reactive oxygen species (ROS) which promotes cellular transformation if cells manage to escape cell death, mechanisms of which remain incompletely understood. Here, we identify that expression of oncogenic as compared to WT KRAS in isogenic cellular systems renders cells more resistant to ferroptosis, a recently described type of regulated necrosis. Mechanistically, we find that cells with mutant KRAS show a specific lack of ferroptosis-induced lipid peroxidation. Interestingly, KRAS-mutant cells upregulate expression of ferroptosis suppressor protein 1 (FSP1). Indeed, elevated levels of FSP1 in KRAS-mutant cells are responsible for mediating ferroptosis resistance and FSP1 is upregulated as a consequence of MAPK and NRF2 pathway activation downstream of KRAS. Strikingly, FSP1 activity promotes cellular transformation in soft agar and its overexpression is sufficient to promote spheroid growth in 3D in KRAS WT cells. Moreover, FSP1 expression and its activity in ferroptosis inhibition accelerates tumor onset of KRAS WT cells in the absence of oncogenic KRAS in vivo. Consequently, we find that pharmacological induction of ferroptosis in pancreatic organoids derived from the LsL-KRASG12D expressing mouse model is only effective in combination with FSP1 inhibition. Lastly, FSP1 is upregulated in non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) as compared to the respective normal tissue of origin and correlates with NRF2 expression in PDAC patient datasets. Based on these data, we propose that KRAS-mutant cells must navigate a ferroptosis checkpoint by upregulating FSP1 during tumor establishment. Consequently, ferroptosis-inducing therapy should be combined with FSP1 inhibitors for efficient therapy of KRAS-mutant cancers.


Subject(s)
Apoptosis Regulatory Proteins , Carcinogenesis , Ferroptosis , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic , Lung Neoplasms/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Apoptosis Regulatory Proteins/metabolism , Pancreatic Neoplasms
11.
J Hum Genet ; 68(1): 51-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36167772

ABSTRACT

ANO3 encodes Anoctamin-3, also known as TMEM16C, a calcium-activated chloride channel. Heterozygous variants of ANO3 can cause dystonia 24, an adult-onset focal dystonia. Some pediatric cases have been reported, but most patients were intellectually normal with some exceptions. Here, we report a two-year-old girl who showed mild to moderate developmental delay, tremor, and ataxic gait, but no obvious dystonia. Trio exome sequencing identified a heterozygous de novo missense variant NM_031418.4:c.1809T>G, p.(Asn603Lys) in the ANO3 gene. Three cases with ANO3 variants and intellectual disability have been reported, including the present case. These variants were predicted to face in the same direction on the same alpha-helix (the transmembrane 4 domain), suggesting an association between these variants and childhood-onset movement disorder with intellectual disability. In pediatric cases with developmental delay and movement disorders such as tremor and ataxia, specific variants in the transmembrane 4 domain of ANO3 may be a cause, even in the absence of dystonia.


Subject(s)
Dystonia , Intellectual Disability , Child, Preschool , Female , Humans , Anoctamins/genetics , Chloride Channels/genetics , Developmental Disabilities/genetics , Dystonia/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Tremor
12.
Cancer Sci ; 113(8): 2727-2737, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35662350

ABSTRACT

Most cancer cells show chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates. Growing evidence suggests that CIN is not just a consequence of, but a driving force for, oncogenic transformation, although the relationship between CIN and tumorigenesis has not been fully elucidated. Here we found that conventional two-dimensional (2D) culture of HeLa cells, a cervical cancer-derived cell line, was a heterogenous population containing cells with different CIN levels. Although cells with high-CIN levels (high-CIN cells) grew more slowly compared with cells with low-CIN levels (low-CIN cells) in 2D monolayer culture, they formed tumors in nude mice and larger spheres in three-dimensional (3D) culture, which was more representative of the in vivo environment. The duration of mitosis was longer in high-CIN cells, reflecting their higher mitotic defects. Single-cell genome sequencing revealed that high-CIN cells exhibited a higher karyotype heterogeneity compared with low-CIN cells. Intriguingly, the karyotype heterogeneity was reduced in the spheres formed by high-CIN cells, suggesting that cells with growth advantages were selected, although genomic copy number changes specific for spheres were not identified. When we examined gene expression profiles, genes related to the K-ras signaling were upregulated, while those related to the unfolded protein response were downregulated in high-CIN cells in 3D culture compared with 2D culture, suggesting the relevance of these genes for their survival. Our data suggested that, although CIN is disadvantageous in monolayer culture, it promotes the selection of cells with growth advantages under in vivo environments, which may lead to tumorigenesis.


Subject(s)
Chromosomal Instability , Mitosis , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromosomal Instability/genetics , HeLa Cells , Humans , Mice , Mice, Nude
13.
J Med Genet ; 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534205

ABSTRACT

BACKGROUND: DNA replisome is a molecular complex that plays indispensable roles in normal DNA replication. IMAGE-I syndrome is a DNA replisome-associated genetic disease caused by biallelic mutations in the gene encoding DNA polymerase epsilon catalytic subunit 1 (POLE). However, the underlying molecular mechanisms remain largely unresolved. METHODS: The clinical manifestations in two patients with IMAGE-I syndrome were characterised. Whole-exome sequencing was performed and altered mRNA splicing and protein levels of POLE were determined. Subcellular localisation, cell cycle analysis and DNA replication stress were assessed using fibroblasts and peripheral blood from the patients and transfected cell lines to determine the functional significance of POLE mutations. RESULTS: Both patients presented with growth retardation, adrenal insufficiency, immunodeficiency and complicated diffuse large B-cell lymphoma. We identified three novel POLE mutations: namely, a deep intronic mutation, c.1226+234G>A, common in both patients, and missense (c.2593T>G) and in-frame deletion (c.711_713del) mutations in each patient. The unique deep intronic mutation produced aberrantly spliced mRNAs. All mutants showed significantly reduced, but not null, protein levels. Notably, the mutants showed severely diminished nuclear localisation, which was rescued by proteasome inhibitor treatment. Functional analysis revealed impairment of cell cycle progression and increase in the expression of phospho-H2A histone family member X in both patients. CONCLUSION: These findings provide new insights regarding the mechanism via which POLE mutants are highly susceptible to proteasome-dependent degradation in the nucleus, resulting in impaired DNA replication and cell cycle progression, a characteristic of DNA replisome-associated diseases.

14.
Cell Rep ; 38(12): 110541, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35320725

ABSTRACT

The histone chaperone complex FACT comprises SPT16 and SSRP1 and contributes to DNA replication, transcription, and repair, but how it plays such various roles is unclear. Here, we show that human SPT16 is ubiquitylated at lysine-674 (K674) by the DCAF14-CRL4 ubiquitin ligase. K674 is located in the middle domain of SPT16, and the corresponding residue of the yeast ortholog is critical for binding to histone H3.1-H4. We show that the middle domain of human SPT16 binds to histone H3.1-H4 and that this binding is inhibited by K674 ubiquitylation. Cells with heterozygous knockin of a K674R mutant of SPT16 manifest reduction of both SPT16 ubiquitylation and H3.1 in chromatin, a reduced population in mid S phase, impaired proliferation, and increased susceptibility to S phase stress. Our data thus indicate that SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones and may thereby control DNA replication-coupled histone incorporation into chromatin.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Chromatin , DNA-Binding Proteins , High Mobility Group Proteins , Histone Chaperones , Humans , Lysine , Receptors, Interleukin-17 , Saccharomyces cerevisiae , Transcriptional Elongation Factors , Ubiquitin-Protein Ligases , Ubiquitination
16.
J Hum Genet ; 67(7): 393-397, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35087201

ABSTRACT

Paucity of interlobular bile ducts (PILBD) is a heterogeneous disorder classified into two categories, syndromic and non-syndromic bile duct paucity. Syndromic PILBD is characterized by the presence of clinical manifestations of Alagille syndrome. Non-syndromic PILBD is caused by multiple diseases, such as metabolic and genetic disorders, infectious diseases, and inflammatory and immune disorders. We evaluated a family with a dominantly inherited PILBD, who presented with cholestasis at 1-2 months of age but spontaneously improved by 1 year of age. Next-generation sequencing analysis revealed a heterozygous CACYBP/SIP p.E177Q pathogenic variant. Calcyclin-binding protein and Siah1 interacting protein (CACYBP/SIP) form a ubiquitin ligase complex and induce proteasomal degradation of non-phosphorylated ß-catenin. Immunohistochemical analysis revealed a slight decrease in CACYBP and ß-catenin levels in the liver of patients in early infancy, which almost normalized by 13 months of age. The CACYBP/SIP p.E177Q pathogenic variant may form a more active or stable ubiquitin ligase complex that enhances the degradation of ß-catenin and delays the maturation of intrahepatic bile ducts. Our findings indicate that accurate regulation of the ß-catenin concentration is essential for the development of intrahepatic bile ducts and CACYBP/SIP pathogenic variant is a novel cause of PILDB.


Subject(s)
Alagille Syndrome , Calcium-Binding Proteins , beta Catenin , Bile Ducts, Intrahepatic/metabolism , Calcium-Binding Proteins/genetics , Humans , Infant , Infant, Newborn , Ubiquitin-Protein Ligases , beta Catenin/metabolism
17.
Front Genet ; 13: 1022339, 2022.
Article in English | MEDLINE | ID: mdl-36685966

ABSTRACT

Genomic analysis has revealed that the genes for various chromatin regulators are mutated in many individuals with neurodevelopmental disorders (NDDs), emphasizing the important role of chromatin regulation in nervous system development and function. Chromatin regulation is mediated by writers, readers, and erasers of histone and DNA modifications, with such proteins being defined by specific domains. One of these domains is the SET domain, which is present in enzymes that catalyze histone methylation. Heterozygous loss-of-function mutations of the SETD5 (SET domain containing 5) gene have been identified in individuals with an NDD designated IDD23 (intellectual developmental disorder, autosomal dominant 23). KBG syndrome (named after the initials of the last names of the first three families identified with the condition) is characterized by features that either overlap with or are distinct from those of IDD23 and was initially thought to be caused only by mutations in the ANKRD11 (ankyrin repeat domain containing 11) gene. However, recent studies have identified SETD5 mutations in some KBG syndrome patients without ANKRD11 mutations. Here we summarize the neurobehavioral characterization of Setd5 +/- mice performed by four independent research groups, compare IDD23 and KBG phenotypes, and address the utility and future development of mouse models for elucidation of the mechanisms underlying NDD pathogenesis, with a focus on SETD5 and its related proteins.

18.
Int J Cancer ; 149(10): 1787-1800, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34346508

ABSTRACT

The splicing of microexons (very small exons) is frequently dysregulated in the brain of individuals with autism spectrum disorder. However, little is known of the patterns, regulatory mechanisms and roles of microexon splicing in cancer. We here examined the transcriptome-wide profile of microexon splicing in matched colorectal cancer (CRC) and normal tissue specimens. Out of 1492 microexons comprising 3 to 15 nucleotides, 21 (1%) manifested differential splicing between CRC and normal tissue. The 21 genes harboring the differentially spliced microexons were enriched in gene ontology terms related to cell adhesion and migration. RNA interference-mediated knockdown experiments identified two splicing factors, RBFOX2 and PTBP1, as regulators of microexon splicing in CRC cells. RBFOX2 and PTBP1 were found to directly bind to microexon-containing pre-mRNAs and to control their splicing in such cells. Differential microexon splicing was shown to be due, at least in part, to altered expression of RBFOX2 and PTBP1 in CRC tissue compared to matched normal tissue. Finally, we found that changes in the pattern of microexon splicing were associated with CRC metastasis. Our data thus suggest that altered expression of RBFOX2 and PTBP1 might influence CRC metastasis through the regulation of microexon splicing.


Subject(s)
Alternative Splicing , Colorectal Neoplasms/genetics , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing Factors/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Ontology , HCT116 Cells , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Immunoblotting , Neoplasm Metastasis , Polypyrimidine Tract-Binding Protein/metabolism , Protein Binding , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Biochem Biophys Res Commun ; 568: 37-42, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34175688

ABSTRACT

Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment and have been shown to promote cancer aggressiveness. In our previous study, analysis of expression profiles obtained from paired CAFs and normal fibroblasts from colorectal cancer (CRC) tissue revealed that gene sets related to the Wnt signaling pathway were highly enriched in colorectal CAFs. Furthermore, among the components of the ß-catenin-independent Wnt pathway, Wnt5a was highly expressed in CAFs. Since Wnt5a is considered to be a regulator of CRC progression in CAFs, we performed immunohistochemical analysis on Wnt5a in 171 patients who underwent surgery for CRC. Positive staining for Wnt5a was often found in cancer stroma, particularly in fibromatous areas, although the immunoreactivity for Wnt5a was weak in cancer cells. Wnt5a status in CAFs was significantly associated with tumor size, depth of invasion, lymphatic and vascular invasion, lymph node metastasis, TNM stage, and recurrence. Subsequent in vitro analyses using human recombinant Wnt5a protein revealed that cancer cell proliferation and migration were significantly increased by stimulation with Wnt5a. Our findings suggest that Wnt5a-derived CAFs play a crucial role in CRC progression and have potential as a target of anti-cancer therapies.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Colorectal Neoplasms/pathology , Wnt-5a Protein/analysis , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Tumor Cells, Cultured , Wnt-5a Protein/genetics
20.
Stem Cell Reports ; 16(6): 1527-1541, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34048688

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Axons/metabolism , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Gene Knockdown Techniques/methods , Homeodomain Proteins/genetics , Humans , Mutation , Phenotype , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...