Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855869

ABSTRACT

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.


Subject(s)
Biomarkers , Disease Progression , Extracellular Vesicles , Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein B , Extracellular Vesicles/metabolism , Humans , Animals , Biomarkers/blood , Mice , Male , Female , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactant-Associated Protein B/blood , Pulmonary Surfactant-Associated Protein B/metabolism , Middle Aged , Aged , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Lung/pathology , Lung/metabolism , Proteomics/methods , Disease Models, Animal , Prognosis , Protein Precursors , Pulmonary Surfactant-Associated Proteins
2.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Article in English | MEDLINE | ID: mdl-38551536

ABSTRACT

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Subject(s)
Asthma , Biomarkers , Extracellular Vesicles , Galectins , Sinusitis , Humans , Asthma/blood , Asthma/physiopathology , Asthma/immunology , Asthma/diagnosis , Extracellular Vesicles/metabolism , Female , Male , Galectins/blood , Biomarkers/blood , Adult , Middle Aged , Sinusitis/blood , Sinusitis/immunology , Rhinitis/blood , Rhinitis/immunology , Rhinitis/physiopathology , Nasal Polyps/immunology , Nasal Polyps/blood , Eosinophils/immunology , Aged , Chronic Disease
3.
Int Immunol ; 34(6): 327-340, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35294531

ABSTRACT

Sarcoidosis is a complex, polygenic, inflammatory granulomatous multi-organ disease of unknown cause. The granulomatous inflammation in sarcoidosis is driven by the interplay between T cells and macrophages. Extracellular vesicles (EVs) play important roles in intercellular communication. We subjected serum EVs, isolated by size exclusion chromatography, from seven patients with sarcoidosis and five control subjects to non-targeted proteomics analysis. Non-targeted, label-free proteomics analysis detected 2292 proteins in serum EVs; 42 proteins were up-regulated in patients with sarcoidosis relative to control subjects; and 324 proteins were down-regulated. The protein signature of EVs from patients with sarcoidosis reflected disease characteristics such as antigen presentation and immunological disease. Candidate biomarkers were further verified by targeted proteomics analysis (selected reaction monitoring) in 46 patients and 10 control subjects. Notably, CD14 and lipopolysaccharide-binding protein (LBP) were validated by targeted proteomics analysis. Up-regulation of these proteins was further confirmed by immunoblotting, and their expression was strongly increased in macrophages of lung granulomatous lesions. Consistent with these findings, CD14 levels were increased in lipopolysaccharide-stimulated macrophages during multinucleation, concomitant with increased levels of CD14 and LBP in EVs. The area under the curve values of CD14 and LBP were 0.81 and 0.84, respectively, and further increased to 0.98 in combination with angiotensin-converting enzyme and soluble interleukin-2 receptor. These findings suggest that CD14 and LBP in serum EVs, which are associated with granulomatous pathogenesis, can improve the diagnostic accuracy in patients with sarcoidosis.


Subject(s)
Acute-Phase Proteins , Extracellular Vesicles , Lipopolysaccharide Receptors , Sarcoidosis , Acute-Phase Proteins/analysis , Biomarkers/analysis , Extracellular Vesicles/chemistry , Humans , Lipopolysaccharide Receptors/blood , Membrane Glycoproteins/blood , Proteomics/methods , Sarcoidosis/blood , Sarcoidosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...