Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Neuroscience ; 513: 38-53, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36682446

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood. Paired patch-clamp recordings from murine cortical PV interneurons and pyramidal neurons revealed that genetic deletion of NMDAR subunit Grin1 in prospective PV interneurons before the second postnatal week impaired evoked- and synchronized-GABA release. Whereas intrinsic excitability and spiking characteristics were also disturbed by Grin1 deletion, neither restoring their excitability by K+ channel blockade nor increasing extracellular Ca2+ rescued the GABA release. GABA release was also insensitive to the Cav2.1 channel antagonist ω-agatoxin IVA. Heterozygous deletion of Cacna1a gene (encoding Cav2.1) in PV interneurons produced a similar GABA release phenotype as the Grin1 mutants. Treatment with the Cav2.1/2.2 channel agonist GV-58 augmented somatic Ca2+ currents and GABA release in Cacna1a-haploinsufficient PV interneurons, but failed to enhance GABA release in the Grin1-deleted PV interneurons. Taken together, our results suggest that Grin1 deletion in prospective PV interneurons impairs proper maturation of membrane excitability and Cav2.1-recruited evoked GABA release. This may increase synaptic excitatory/inhibitory ratio in principal neurons, contributing to the emergence of SCZ-like phenotypes.


Subject(s)
Neocortex , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Parvalbumins/metabolism , Neocortex/metabolism , Prospective Studies , Synaptic Transmission/physiology , Interneurons/metabolism , gamma-Aminobutyric Acid
2.
Transl Psychiatry ; 12(1): 168, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459266

ABSTRACT

Blockade of N-methyl-D-aspartate receptors (NMDAR) is known to augment cortical serotonin 2A receptors (5-HT2ARs), which is implicated in psychosis. However, the pathways from NMDAR hypofunction to 5-HT2AR up-regulation are unclear. Here we addressed in mice whether genetic deletion of the indispensable NMDAR-subunit Grin1 principally in corticolimbic parvalbumin-positive fast-spiking interneurons, could up-regulate 5-HT2ARs leading to cortical hyper-excitability. First, in vivo local-field potential recording revealed that auditory cortex in Grin1 mutant mice became hyper-excitable upon exposure to acoustic click-train stimuli that release 5-HT in the cortex. This excitability increase was reproduced ex vivo where it consisted of an increased frequency of action potential (AP) firing in layer 2/3 pyramidal neurons of mutant auditory cortex. Application of the 5-HT2AR agonist TCB-2 produced similar results. The effect of click-trains was reversed by the 5-HT2AR antagonist M100907 both in vivo and ex vivo. Increase in AP frequency of pyramidal neurons was also reversed by application of Gαq protein inhibitor BIM-46187 and G protein-gated inwardly-rectifying K+ (GIRK) channel activator ML297. In fast-spiking interneurons, 5-HT2AR activation normally promotes GABA release, contributing to decreased excitability of postsynaptic pyramidal neurons, which was missing in the mutants. Moreover, unlike the controls, the GABAA receptor antagonist (+)-bicuculline had little effect on AP frequency of mutant pyramidal neurons, indicating a disinhibition state. These results suggest that the auditory-induced hyper-excitable state is conferred via GABA release deficits from Grin1-lacking interneurons leading to 5-HT2AR dysregulation and GIRK channel suppression in cortical pyramidal neurons, which could be involved in auditory psychosis.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Disease Models, Animal , Mice , Pyramidal Cells/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Cell Rep ; 36(11): 109702, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525354

ABSTRACT

Modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate the feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unclear. Moreover, the correlation between MC activity and anxiety states is unclear. In this study, we first demonstrate, by means of calcium fiber photometry, that MC activity in the ventral hippocampus (vHPC) of mice increases while they explore anxiogenic environments. Next, juxtacellular recordings reveal that optogenetic activation of MCs preferentially recruits GABAergic neurons, thereby suppressing GCs and ventral CA1 neurons. Finally, chemogenetic excitation of MCs in the vHPC reduces avoidance behaviors in both healthy and anxious mice. These results not only indicate an anxiolytic role of MCs but also suggest that MCs may be a potential therapeutic target for anxiety disorders.


Subject(s)
Behavior, Animal/physiology , Hippocampus/metabolism , Mossy Fibers, Hippocampal/pathology , Animals , CA1 Region, Hippocampal/metabolism , Calcium/metabolism , Chronic Pain/metabolism , Chronic Pain/pathology , Dentate Gyrus/cytology , Disease Models, Animal , Fibromyalgia/metabolism , Fibromyalgia/pathology , GABAergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics/methods , Patch-Clamp Techniques
4.
Neuropsychopharmacology ; 45(13): 2207-2218, 2020 12.
Article in English | MEDLINE | ID: mdl-32859995

ABSTRACT

Cortical gamma oscillations are believed to be involved in mental processes which are disturbed in schizophrenia. For example, the magnitudes of sensory-evoked oscillations, as measured by auditory steady-state responses (ASSRs) at 40 Hz, are robustly diminished, whereas the baseline gamma power is enhanced in schizophrenia. Such dual gamma oscillation abnormalities are also present in a mouse model of N-methyl-D-aspartate receptor hypofunction (Ppp1r2cre/Grin1 knockout mice). However, it is unclear whether the abnormal gamma oscillations are associated with dysfunction in schizophrenia. We found that glycogen synthase kinase-3 (GSK3) is overactivated in corticolimbic parvalbumin-positive GABAergic interneurons in Grin1 mutant mice. Here we addressed whether GSK3ß inhibition reverses both abnormal gamma oscillations and behavioral deficits with high correlation by pharmacological and genetic approach. We demonstrated that the paralog selective-GSK3ß inhibitor, but not GSK3α inhibitor, normalizes the diminished ASSRs, excessive baseline gamma power, and deficits in spatial working memory and prepulse inhibition (PPI) of acoustic startle in Grin1 mutant mice. Cell-type specific GSK3B knockdown, but not GSK3A knockdown, also reversed abnormal gamma oscillations and behavioral deficits. Moreover, GSK3B knockdown, but not GSK3A knockdown, reverses the mutants' in vivo spike synchrony deficits. Finally, ex vivo patch-clamp recording from pairs of neighboring cortical pyramidal neurons showed a reduction of synchronous spontaneous inhibitory-postsynaptic-current events in mutants, which was reversed by GSK3ß inhibition genetically and pharmacologically. Together, GSK3ß inhibition in corticolimbic interneurons ameliorates the deficits in spatial working memory and PPI, presumably by restoration of synchronous GABA release, synchronous spike firing, and evoked-gamma power increase with lowered baseline power.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Cognition , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinase 3 beta , Mice , Mice, Knockout , Schizophrenia/drug therapy
5.
Pharmacol Ther ; 205: 107426, 2020 01.
Article in English | MEDLINE | ID: mdl-31629007

ABSTRACT

N-methyl-d-aspartate (NMDA) receptor (NMDAR) hypofunction plays a key role in pathophysiology of schizophrenia. Since NMDAR hypofunction has also been reported in autism, Alzheimer's disease and cognitive dementia, it is crucial to identify the location, timing, and mechanism of NMDAR hypofunction for schizophrenia for better understanding of disease etiology and for novel therapeutic intervention. In this review, we first discuss the shared underlying mechanisms of NMDAR hypofunction in NMDAR antagonist models and the anti-NMDAR autoantibody model of schizophrenia and suggest that NMDAR hypofunction could occur in GABAergic neurons in both models. Preclinical models using transgenic mice have shown that NMDAR hypofunction in cortical GABAergic neurons, in particular parvalbumin-positive fast-spiking interneurons, in the early postnatal period confers schizophrenia-related phenotypes. Recent studies suggest that NMDAR hypofunction can also occur in PV-positive GABAergic neurons with alterations of NMDAR-associated proteins, such as neuregulin/ErbB4, α7nAChR, and serine racemase. Furthermore, several environmental factors, such as oxidative stress, kynurenic acid and hypoxia, may also potentially elicit NMDAR hypofunction in GABAergic neurons in early postnatal period. Altogether, the studies discussed here support a central role for GABAergic abnormalities in the context of NMDAR hypofunction. We conclude by suggesting potential therapeutic strategies to improve the function of fast-spiking neurons.


Subject(s)
GABAergic Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/physiopathology , Animals , Autoantibodies/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Parvalbumins/metabolism , Phenotype , Receptors, N-Methyl-D-Aspartate/immunology
6.
Schizophr Bull ; 45(1): 138-147, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29394409

ABSTRACT

Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology.


Subject(s)
Behavior, Animal/physiology , Dopamine/metabolism , GABAergic Neurons/metabolism , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Amphetamine/pharmacology , Animals , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Disease Models, Animal , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Receptors, N-Methyl-D-Aspartate/genetics
7.
Biol Psychiatry ; 84(8): 591-600, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29945718

ABSTRACT

BACKGROUND: Ketamine, an N-methyl-D-aspartate receptor antagonist, exerts robust antidepressant effects in patients with treatment-resistant depression. The precise mechanisms underlying ketamine's antidepressant actions remain unclear, although previous research suggests that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) activation plays a role. We investigated whether (S)-norketamine and (R)-norketamine, the two main metabolites of (R,S)-ketamine, also play a significant role in ketamine's antidepressant effects and whether the effects are mediated by AMPAR. METHODS: Cellular mechanisms of antidepressant action of norketamine enantiomers were examined in mice. RESULTS: (S)-Norketamine had more potent antidepressant effects than (R)-norketamine in inflammation and chronic social defeat stress models. Furthermore, (S)-norketamine induced more beneficial effects on decreased dendritic spine density and synaptogenesis in the prefrontal cortex and hippocampus compared with (R)-norketamine. Unexpectedly, AMPAR antagonists did not block the antidepressant effects of (S)-norketamine. The electrophysiological data showed that, although (S)-norketamine inhibited N-methyl-D-aspartate receptor-mediated synaptic currents, (S)-norketamine did not enhance AMPAR-mediated neurotransmission in hippocampal neurons. Furthermore, (S)-norketamine improved reductions in brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the prefrontal cortex of mice susceptible to chronic social defeat stress, whereas the tropomyosin receptor kinase B antagonist and a mechanistic target of rapamycin inhibitor blocked the antidepressant effects of (S)-norketamine. In contrast to (S)-ketamine, (S)-norketamine did not cause behavioral abnormalities, such as prepulse inhibition deficits, reward effects, loss of parvalbumin immunoreactivity in the medial prefrontal cortex, or baseline gamma-band oscillation increase. CONCLUSIONS: Our data identified a novel AMPAR activation-independent mechanism underlying the antidepressant effects of (S)-norketamine. (S)-Norketamine and its prodrugs could be novel antidepressants without the detrimental side effects of (S)-ketamine.


Subject(s)
Depression/drug therapy , Hippocampus/metabolism , Ketamine/analogs & derivatives , Animals , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/metabolism , Ketamine/pharmacology , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Stress, Psychological/drug therapy
8.
Neuropsychopharmacology ; 43(6): 1445-1456, 2018 05.
Article in English | MEDLINE | ID: mdl-29362511

ABSTRACT

Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests. Since saccharine preference, progressive ratio responding to food, and learned helplessness task were normal, such avolition-like behavior could not be explained by anhedonia or behavioral despair. In line with the prevailing view that dopamine in anterior cingulate cortex (ACC) plays a role in evaluating effort cost for engaging in actions, we found that tail-suspension triggered dopamine release in ACC of controls, which was severely attenuated in the mutant mice. Conversely, ACC dopamine release by progressive ratio responding to reward, during which animals were allowed to effortlessly perform the nose-poking, was not affected in mutants. These results suggest that cortical GABA reduction preferentially impairs the effort-based behavior which requires much effort with little benefit, through a deficit of ACC dopamine release triggered by high-effort cost behavior, but not by reward-seeking behavior. Collectively, a subset of negative symptoms with a reduced willingness to expend costly effort, often observed in patients with schizophrenia and depression, may be attributed to cortical GABA level reduction.


Subject(s)
Cerebral Cortex/metabolism , Glutamate Decarboxylase/deficiency , Hippocampus/metabolism , Interneurons/metabolism , Motivation/physiology , gamma-Aminobutyric Acid/deficiency , Animals , Avoidance Learning/physiology , Epilepsy/metabolism , Female , Glutamate Decarboxylase/genetics , Male , Mice, Knockout , Motor Activity/physiology , Phenotype , Reward , Sexual Behavior, Animal/physiology , Social Behavior , Synaptic Transmission/physiology , Tissue Culture Techniques
9.
NPJ Schizophr ; 3: 7, 2017.
Article in English | MEDLINE | ID: mdl-28560253

ABSTRACT

The N-methyl-d-aspartate receptor hypofunction is one of the most prevalent models of schizophrenia. For example, healthy subjects treated with uncompetitive N-methyl-d-aspartate receptor antagonists elicit positive, negative, and cognitive-like symptoms of schizophrenia. Patients with anti-N-methyl-d-aspartate receptor encephalitis, which is likely caused by autoantibody-mediated down-regulation of cell surface N-methyl-d-aspartate receptors, often experience psychiatric symptoms similar to schizophrenia initially. However, where and when N-methyl-d-aspartate receptor hypofunction occurs in the brain of schizophrenic patients is poorly understood. Here we review the findings from N-methyl-d-aspartate receptor antagonist and autoantibody models, postmortem studies on N-methyl-d-aspartate receptor subunits, as well as the global and cell-type-specific knockout mouse models of subunit GluN1. We compare various conditional GluN1 knockout mouse strains, focusing on the onset of N-methyl-d-aspartate receptor deletion and on the cortical cell-types. Based on these results, we hypothesize that N-methyl-d-aspartate receptor hypofunction initially occurs in cortical GABAergic neurons during early postnatal development. The resulting GABA neuron maturation deficit may cause reduction of intrinsic excitability and GABA release, leading to disinhibition of pyramidal neurons. The cortical disinhibition in turn could elicit glutamate spillover and subsequent homeostatic down regulation of N-methyl-d-aspartate receptor function in pyramidal neurons in prodromal stage. These two temporally-distinct N-methyl-d-aspartate receptor hypofunctions may be complimentary, as neither alone may not be able to fully explain the entire schizophrenia pathophysiology. Potential underlying mechanisms for N-methyl-d-aspartate receptor hypofunction in cortical GABA neurons are also discussed, based on studies of naturally-occurring N-methyl-d-aspartate receptor antagonists, neuregulin/ErbB4 signaling pathway, and theoretical analysis of excitatory/inhibitory balance.

10.
Neuron ; 93(5): 1236, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28279358
11.
Neuron ; 93(3): 465-467, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28182899

ABSTRACT

Three studies by Danielson et al. (2017), GoodSmith et al. (2017), and Sensai and Buzsáki (2017) distinguish in vivo firing properties of dentate mossy cells from granule cells during behavior. Robust spatial remapping of mossy cells, in contrast to sparse firing of granule cells, suggests differential involvement in pattern separation.


Subject(s)
Dentate Gyrus/cytology , Mossy Fibers, Hippocampal , Neurons/cytology
12.
Alcohol ; 58: 47-51, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28109345

ABSTRACT

N-Methyl-d-aspartate receptors (NMDAR) are involved in the regulation of alcohol drinking, but the contribution of NMDAR subunits located on specific neuronal populations remains incompletely understood. The current study examined the role of GluN2B-containing NMDARs expressed on cortical principal neurons and cortical interneurons in mouse ethanol drinking. Consumption of escalating concentrations of ethanol was measured in mice with GluN2B gene deletion in either cortical principal neurons (GluN2BCxNULL) or interneurons (GluN2BInterNULL), using a two-bottle choice paradigm. Results showed that GluN2BInterNULL, but not GluN2BCxNULL, mice consumed significantly less ethanol, at relatively high concentrations, than non-mutant controls. In a second paradigm in which mice were offered a 15% ethanol concentration, without escalation, GluN2BCxNULL mice were again no different from controls. These findings provide novel evidence for a contribution of interneuronal GluN2B-containing NMDARs in the regulation of ethanol drinking.


Subject(s)
Alcohol Drinking/metabolism , Cerebral Cortex/physiology , Gene Deletion , Interneurons/physiology , Protein Subunits/deficiency , Receptors, N-Methyl-D-Aspartate/deficiency , Alcohol Drinking/genetics , Animals , Cerebral Cortex/drug effects , Choice Behavior/drug effects , Choice Behavior/physiology , Ethanol/administration & dosage , Female , Interneurons/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Subunits/genetics , Receptors, N-Methyl-D-Aspartate/genetics
13.
Psychopharmacology (Berl) ; 232(20): 3753-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26223494

ABSTRACT

RATIONALE: Compulsive behavior, which is a hallmark of psychiatric disorders such as addiction and obsessive-compulsive disorder, engages corticostriatal circuits. Previous studies indicate a role for corticostriatal N-methyl-D-aspartate receptors (NMDARs) in mediating compulsive-like responding for drugs of abuse, but the specific receptor subunits controlling reward-seeking in the face of punishment remain unclear. OBJECTIVES: The current study assessed the involvement of corticostriatal GluN2B-containing NMDARs in measures of persistent and punished food reward-seeking. METHODS: Mice with genetic deletion of GluN2B in one of three distinct neuronal populations, cortical principal neurons, forebrain interneurons, or striatal medium spiny neurons, were tested for (1) sustained food reward-seeking when reward was absent, (2) reward-seeking under a progressive ratio schedule of reinforcement, and (3) persistent reward-seeking after a footshock punishment. RESULTS: Mutant mice with genetic deletion of GluN2B in cortical principal neurons demonstrated attenuated suppression of reward-seeking during punishment. These mice performed normally on other behavioral measures, including an assay for pain sensitivity. Mutants with interneuronal or striatal GluN2B deletions were normal on all behavioral assays. CONCLUSIONS: Current findings offer novel evidence that loss of GluN2B-containing NMDARs expressed on principal neurons in the cortex results in reduced punished food reward-seeking. These data support the involvement of GluN2B subunit in cortical circuits regulating cognitive flexibility in a variety of settings, with implications for understanding the basis of inflexible behavior in neuropsychiatric disorders including obsessive-compulsive disorders (OCD) and addictions.


Subject(s)
Corpus Striatum/metabolism , Eating/physiology , Prosencephalon/metabolism , Punishment , Receptors, N-Methyl-D-Aspartate/deficiency , Reward , Animals , Eating/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obsessive-Compulsive Disorder/metabolism , Obsessive-Compulsive Disorder/psychology , Punishment/psychology , Reinforcement, Psychology
14.
Neuroreport ; 26(9): 489-94, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25968910

ABSTRACT

Previous studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning. Mutant mice (floxed-GluN2B×Ppp1r2-Cre) were generated to produce loss of GluN2B on forebrain interneurons and phenotyped on a touchscreen-based pairwise visual learning paradigm. We found that the mutants showed normal performance during Pavlovian and instrumental pretraining, but were significantly impaired on a discrimination learning task. Detailed analysis of the microstructure of discrimination performance revealed reduced win→stay behavior in the mutants. These results further support the role of NMDAR, and GluN2B in particular, on modulation of striatal function necessary for efficient choice behavior and suggest that NMDAR on interneurons may play a critical role in associative learning.


Subject(s)
Discrimination Learning/physiology , GABAergic Neurons/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Female , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prosencephalon/physiology , Receptors, N-Methyl-D-Aspartate/genetics
15.
Behav Brain Res ; 287: 89-95, 2015.
Article in English | MEDLINE | ID: mdl-25800971

ABSTRACT

Drugs targeting the glutamate N-methyl-d-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR.


Subject(s)
Depressive Disorder/metabolism , Guanylate Kinases/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amygdala/drug effects , Amygdala/metabolism , Animals , Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Disks Large Homolog 4 Protein , Excitatory Amino Acid Antagonists/pharmacology , Guanylate Kinases/genetics , Interneurons/drug effects , Interneurons/metabolism , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Phenols/pharmacology , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/genetics
16.
Front Neurosci ; 8: 168, 2014.
Article in English | MEDLINE | ID: mdl-25018691

ABSTRACT

In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The "paradoxically" high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception.

17.
Dev Neurobiol ; 74(3): 333-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24151253

ABSTRACT

Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.


Subject(s)
Anxiety/physiopathology , Axonal Transport , Axons/metabolism , Mitochondria/physiology , Neurons/physiology , RNA, Messenger/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/physiology , Cells, Cultured , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Exploratory Behavior/physiology , Frontal Lobe/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Mitochondrial , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Stress, Psychological
18.
Stem Cell Reports ; 1(6): 545-59, 2013.
Article in English | MEDLINE | ID: mdl-24371809

ABSTRACT

A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs-Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1-can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Animals , Blood Cells/cytology , Blood Cells/metabolism , Cell Line , Cell Lineage , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/metabolism , Mice , Muscle Cells/cytology , Muscle Cells/metabolism , Neurons/cytology , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology
19.
Front Behav Neurosci ; 7: 116, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24027504

ABSTRACT

Schizophrenia etiology is thought to involve an interaction between genetic and environmental factors during postnatal brain development. However, there is a fundamental gap in our understanding of the molecular mechanisms by which environmental factors interact with genetic susceptibility to trigger symptom onset and disease progression. In this review, we summarize the most recent findings implicating oxidative stress as one mechanism by which environmental insults, especially early life social stress, impact the development of schizophrenia. Based on a review of the literature and the results of our own animal model, we suggest that environmental stressors such as social isolation render parvalbumin-positive interneurons (PVIs) vulnerable to oxidative stress. We previously reported that social isolation stress exacerbates many of the schizophrenia-like phenotypes seen in a conditional genetic mouse model in which NMDA receptors (NMDARs) are selectively ablated in half of cortical and hippocampal interneurons during early postnatal development (Belforte et al., 2010). We have since revealed that this social isolation-induced effect is caused by impairments in the antioxidant defense capacity in the PVIs in which NMDARs are ablated. We propose that this effect is mediated by the down-regulation of PGC-1α, a master regulator of mitochondrial energy metabolism and anti-oxidant defense, following the deletion of NMDARs (Jiang et al., 2013). Other potential molecular mechanisms underlying redox dysfunction upon gene and environmental interaction will be discussed, with a focus on the unique properties of PVIs.

20.
Nat Neurosci ; 16(8): 1101-10, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23831965

ABSTRACT

A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal deletion of Grin2b (encoding the NMDA-type glutamate receptor subunit GluN2B) or DS-restricted GluN2B antagonism impaired choice learning, whereas cortical Grin2b deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior.


Subject(s)
Choice Behavior/physiology , Conditioning, Operant/physiology , Corpus Striatum/physiology , Discrimination Learning/physiology , Nerve Net/physiology , Nerve Tissue Proteins/physiology , Pattern Recognition, Visual/physiology , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Adaptation, Psychological/physiology , Animals , Anticipation, Psychological/physiology , Decision Making/physiology , Excitatory Amino Acid Antagonists/pharmacology , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neuronal Plasticity , Patch-Clamp Techniques , Phenols/pharmacology , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/deficiency , Receptors, N-Methyl-D-Aspartate/genetics , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...