Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 4497, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934149

ABSTRACT

Male and female pollinators often exhibit sex-specific preferences for visiting different flowers. Recent studies have shown that these preferences play an important role in shaping the network structure of pollination mutualism, but little is known about how they can mediate plant-plant interactions and coexistence of competing plants. The ecological consequences of sex-specific pollination can be complex. Suppose that a plant is favoured by female pollinators. They produce male pollinators, who may prefer visiting other competing plants and intensify the negative effects of inter-plant competition. Here, we analysed a simple two plant-one pollinator model with the sex structure of the pollinator. We observed that (i) sex-specific pollination can have complex consequences for inter-plant competition and coexistence (e.g. the occurrence of non-trivial alternative stable states in which one plant excludes or coexists with the other depending on the initial conditions), (ii) male and female pollinators have distinct ecological consequences because female pollinators have a demographic impact owing to reproduction, and (iii) plants are likely to coexist when male and female pollinators prefer different plants. These results suggest that sex-specific pollination is crucial for competition and coexistence of co-flowering plants. Future, pollination research should more explicitly consider the sex-specific behaviour of pollinating animals.


Subject(s)
Magnoliopsida , Animals , Pollination , Reproduction , Plants , Flowers
3.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(5): 756-764, 2018 07.
Article in English | MEDLINE | ID: mdl-28745537

ABSTRACT

Gymnogobius isaza is a freshwater goby endemic to ancient Lake Biwa, the largest lake in Japan. The species is now listed as 'Critically Endangered' in the Red Data Book of Japan. Nevertheless, it remains subject to fishing without any specific management strategies. Previous studies using mitochondrial DNA markers showed that this fish species has two cryptic lineages. However, little is known about spatial genetic structure and ecological differences across the broad lakescape. In this study, we collected fish samples at nine locations along the lakeshore during the breeding season and tested for the presence of spatial heterogeneity in the lineage's composition while measuring body size as the most fundamental biological trait. The results showed that the major lineage dominated all the sampling locations whereas the minor lineage consisted of only 11% (16/143) of samples. Furthermore, although their spatial distributions overlapped (i.e. the two lineages may be well mixed), we found it possible that the minor lineage may have a potentially narrower distribution than the major lineage. In addition, we found that the two lineages differ in body size; specifically, the minor lineage is smaller in size. From the viewpoint of genetic diversity conservation and sustainable resource use, this fish should be managed as two genetic stocks and spatial and/or body size-based fishery management is desirable, with particular attention to the minor (smaller sized) lineage.


Subject(s)
Body Size/genetics , Perciformes/genetics , Animals , DNA, Mitochondrial/genetics , Endangered Species , Genetic Variation/genetics , Genome, Mitochondrial/genetics , Japan , Lakes , Mitochondria/genetics , Phenotype , Phylogeny
4.
Sci Rep ; 7(1): 941, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28424477

ABSTRACT

Understanding warming impact on herbivores facilitates predicting plant/crop dynamics in natural/agricultural systems. However, it remains unclear how warming will affect herbivore population size and population composition, consequently altering herbivore colonization in a tri-trophic system (plant-herbivore-predator or crop-pest-biocontrol agent). We studied a soybean-aphid-lady beetle system, by conducting (1) a laboratory warming experiment to examine warming impact (+2 °C or +4 °C) on the aphid population size and composition (alate proportion), and (2) a field colonization experiment to examine whether the warming-induced effect subsequently interacts with predators (lady beetles) in affecting aphid colonization. The results showed that warming affected the initial aphid population composition (reduced alate proportion) but not population size; this warming-induced effect strengthened the top-down control by lady beetles and slowing aphid colonization. In other words, biocontrol on crop pests by predators could improve under 2-4 °C warming. Furthermore, aphid colonization was affected by an interaction between the alate proportion and predator (lady beetle) presence. This study suggests that warming affects herbivore population composition and likely mediates top-down control on herbivore colonization by predators. This mechanism may be crucial but underappreciated in climate change ecology because population composition (wing form, sex ratio, age/body size structure) shifts in many species under environmental change.


Subject(s)
Coleoptera/physiology , Glycine max/parasitology , Predatory Behavior , Animals , Climate Change , Coleoptera/growth & development , Herbivory , Population Density , Population Dynamics
5.
Evolution ; 70(2): 369-84, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26768067

ABSTRACT

Sexual size dimorphism (SSD) describes divergent body sizes of adult males and females. While SSD has traditionally been explained by sexual and fecundity selection, recent advances in physiology and developmental biology emphasize that SSD would occur proximately because of sexual differences in ontogenetic growth trajectories (i.e., growth rate and duration). Notably, these ontogenetic traits are subject to energetic or time constraints and thus traded off with fitness components (e.g., survival and reproduction). To elucidate the importance of such ontogenetic trade-offs in the evolution of SSD, we developed a new theoretical framework by extending quantitative genetic models for the evolution of sexual dimorphism in which we reinterpret the trait as body size and reformulate sex-specific fitness in size-dependent manners. More specifically, we assume that higher growth rate or longer growth duration leads to larger body size and higher reproductive success but incurs the cost of lower survivorship or shorter reproduction period. We illustrate how two sexes would optimize ontogenetic growth trajectories in sex-specific ways and exhibit divergent body sizes. The present framework provides new insights into the evolutionary theory of SSD and predictions for empirical testing.


Subject(s)
Body Size/genetics , Evolution, Molecular , Models, Genetic , Sex Characteristics , Animals , Female , Genetic Fitness , Male , Selection, Genetic
6.
PLoS One ; 10(4): e0124539, 2015.
Article in English | MEDLINE | ID: mdl-25884405

ABSTRACT

The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10-30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.


Subject(s)
Forests , Rain , Tropical Climate , Models, Theoretical , Poisson Distribution
7.
Sci Rep ; 5: 7871, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25598411

ABSTRACT

The Levins model is a classical but still widely used metapopulation model that describes temporal changes in the regional abundance of a species by extinction and colonization of subpopulations. A fundamental assumption of the model is that the landscape is homogeneous and the species moves between identical patches at random. However, this assumption clearly contrasts with the common observation that different stages prefer or require different habitat types. Here I studied a minimum extension of the Levins model in which the species has stage-specific (juvenile and adult) spatial distributions and dispersal occurs at the timing of reproduction and maturation (i.e., ontogenetic habitat shifts). I examined how the persistence of the stage-structured metapopulations would be affected by rescue effect and interspecific competition. The models predict that rates of ontogenetic habitat shifts are particularly crucial for the persistence or coexistence of stage-structured metapopulations because the species need to complete biphasic life cycles. The present study opens a new avenue for exploring stage- and space-structured population dynamics and will contribute to better landscape management for the conservation of stage-structured animals.


Subject(s)
Environment , Models, Theoretical , Population Dynamics , Animals , Ecosystem , Life Cycle Stages/physiology
8.
Biol Lett ; 9(3): 20121193, 2013 Jun 23.
Article in English | MEDLINE | ID: mdl-23536441

ABSTRACT

As predator-prey interactions are inherently size-dependent, predator and prey body sizes are key to understanding their feeding relationships. To describe predator-prey size relationships (PPSRs) when predators can consume prey larger than themselves, we conducted field observations targeting three aquatic hemipteran bugs, and assessed their body masses and those of their prey for each hunting event. The data revealed that their PPSR varied with predator size and species identity, although the use of the averaged sizes masked these effects. Specifically, two predators had slightly decreased predator-prey mass ratios (PPMRs) during growth, whereas the other predator specialized on particular sizes of prey, thereby showing a clear positive size-PPMR relationship. We discussed how these patterns could be different from fish predators swallowing smaller prey whole.


Subject(s)
Body Size , Hemiptera/physiology , Predatory Behavior , Animals
9.
Int J Mol Sci ; 13(5): 5700-5705, 2012.
Article in English | MEDLINE | ID: mdl-22754324

ABSTRACT

Gymnogobius isaza is a freshwater goby endemic to Lake Biwa, Japan. They experienced a drastic demographic bottleneck in the 1950s and 1980s and slightly recovered thereafter, but the population size is still very small. To reveal dynamics of genetic diversity of G. isaza, we developed nine microsatellite markers based on the sequence data of a related goby Chaenogobius annularis. Nine SSR (Simple Sequence Repeats) markers were successfully amplified for raw and formalin-fixed fish samples. The number of alleles and expected heterozygosities ranged from one to 10 and from 0.06 to 0.84, respectively, for the current samples, while one to 12 and 0.09 to 0.83 for historical samples. The markers described here will be useful for investigating the genetic diversity and gene flow and for conservation of G. isaza.


Subject(s)
Endangered Species , Microsatellite Repeats , Perciformes/genetics , Animals , Genetic Variation , Heterozygote , Japan
10.
Biol Lett ; 8(4): 685-8, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22491764

ABSTRACT

Plants are subject to diseases caused by pathogens, many of which are transmitted by herbivorous arthropod vectors. To understand plant disease dynamics, we studied a minimum hybrid model combining consumer-resource (herbivore-plant) and susceptible-infected models, in which the disease is transmitted bi-directionally between the consumer and the resource from the infected to susceptible classes. Model analysis showed that: (i) the disease is more likely to persist when the herbivore feeds on the susceptible plants rather than the infected plants, and (ii) alternative stable states can exist in which the system converges to either a disease-free or an endemic state, depending on the initial conditions. The second finding is particularly important because it suggests that the disease may persist once established, even though the initial prevalence is low (i.e. the R(0) rule does not always hold). This situation is likely to occur when the infection improves the plant nutritive quality, and the herbivore preferentially feeds on the infected resource (i.e. indirect vector-pathogen mutualism). Our results highlight the importance of the eco-epidemiological perspective that integration of tripartite interactions among host plant, plant pathogen and herbivore vector is crucial for the successful control of plant diseases.


Subject(s)
Arthropod Vectors/microbiology , Behavior, Animal/physiology , Herbivory , Models, Biological , Plant Diseases/parasitology , Animals , Arthropod Vectors/pathogenicity , Arthropod Vectors/physiology , Bacteria/pathogenicity , Biota , Computer Simulation , Host-Pathogen Interactions , Plant Diseases/microbiology , Plants/microbiology , Plants/parasitology , Population Density
11.
PLoS One ; 7(12): e53167, 2012.
Article in English | MEDLINE | ID: mdl-23285262

ABSTRACT

Body size and environmental prey availability are both key factors determining feeding habits of gape-limited fish predators. However, our understanding of their interactive or relative effects is still limited. In this study, we performed quantitative dietary analysis of different body sizes of goby (Gymnogobius isaza) specimens collected from Lake Biwa between 1962 and 2004. First, we report that the diet was composed mainly of zooplankton (cladocerans and copepods) before the 1980s, and thereafter, shifted to zoobenthos (gammarids). This foraging shift coincided with, and thus can be linked to, known historical events in the lake at that time: decrease in zooplankton abundance with the alleviation of eutrophication, increase in fish body size resulting from fish population collapse, and increase in gammarid abundance due to reduced fish predation pressure. Supporting this view, our data analyses revealed how the long-term changes in the diet composition would be co-mediated by changes in fish body size and environmental prey availability. Specifically, while zoobenthos abundance strongly affected the fish diet composition, larger (smaller) fish preferred zoobenthos (zooplankton). Furthermore, the body size effects were stronger than those of prey availability. These results provide the best long-term evidence that fish feeding habits vary over decades with its body size and prey community due to anthropogenic disturbances.


Subject(s)
Body Size/physiology , Diet , Food Chain , Perciformes/physiology , Predatory Behavior , Animal Nutritional Physiological Phenomena , Animals , Environment , Feeding Behavior/physiology , Japan , Lakes , Perciformes/anatomy & histology , Predatory Behavior/physiology , Time Factors
12.
PLoS One ; 6(2): e14667, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21346805

ABSTRACT

It has been suggested that when juveniles and adults use different resources or habitats, alternative stable states (ASS) may exist in systems coupled by an ontogenetic niche shift. However, mainly the simplest system, i.e., the one-consumer-two-resource system, has been studied previously, and little is known about the development of ASS existing in more complex systems. Here, I theoretically investigated the development of ASS caused by an ontogenetic niche shift in the presence of multiple resource use. I considered three independent scenarios; (i) additional resources, (ii) multiple habitats, and (iii) interstage resource sharing. The model analyses illustrate that relative balance between the total resource availability in the juvenile and adult habitats is crucial for the development of ASS. This balance is determined by factors such as local habitat productivity, subsidy inputs, colonization area, and foraging mobility. Furthermore, it is also shown that interstage resource sharing generally suppresses ASS. These results suggest that the anthropogenic impacts of habitat modifications (e.g., fragmentation and destruction) or interaction modifications (e.g., changes in ontogeny and foraging behavior) propagate through space and may cause or prevent regime shifts in the regional community structure.


Subject(s)
Ecological and Environmental Phenomena , Ecosystem , Growth and Development , Animals , Models, Theoretical , Reproduction
13.
PLoS One ; 5(2): e9120, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20161751

ABSTRACT

Characterizing relationships between individual body size and trophic niche position is essential for understanding how population and food-web dynamics are mediated by size-dependent trophic interactions. However, whether (and how) intraspecific size-trophic relationships (i.e., trophic ontogeny pattern at the population level) vary with time remains poorly understood. Using archival specimens of a freshwater predatory fish Gymnogobius isaza (Tanaka 1916) from Lake Biwa, Japan, we assembled a long-term (>40 years) time-series of the size-dependence of trophic niche position by examining nitrogen stable isotope ratios (delta(15)N) of the fish specimens. The size-dependence of trophic niche position was defined as the slope of the relationship between delta(15)N and log body size. Our analyses showed that the slope was significantly positive in about 60% of years and null in other years, changing through time. This is the first quantitative (i.e., stable isotope) evidence of long-term variability in the size-trophic relationship in a predatory fish. This finding had implications for the fish trophic dynamics, despite that about 60% of the yearly values were not statistically different from the long-term average. We proposed hypotheses for the underlying mechanism of the time-varying size-trophic relationship.


Subject(s)
Body Size/physiology , Food Chain , Perciformes/physiology , Predatory Behavior/physiology , Animals , Feeding Behavior/physiology , Fresh Water , Japan , Models, Biological , Nitrogen Isotopes , Time Factors
14.
J Math Biol ; 58(3): 459-79, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18663449

ABSTRACT

In this paper, a mathematical model of a prey-predator system is proposed to resolve the paradox of enrichment in ecosystems. The model is based on the natural strategy that a predator takes, i.e, it produces resting eggs in harsh environment. Our result gives a criterion for a functional response, which ensures that entering dormancy stabilizes the population dynamics. It is also shown that the hatching of resting eggs can stabilize the population dynamics when the switching between non-resting and resting eggs is sharp. Furthermore, the bifurcation structure of our model suggests the simultaneous existence of a stable equilibrium and a large amplitude cycle in natural enriched environments.


Subject(s)
Ecosystem , Models, Biological , Predatory Behavior , Animals , Daphnia/growth & development , Female , Numerical Analysis, Computer-Assisted , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...