Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
PLoS One ; 11(8): e0160350, 2016.
Article in English | MEDLINE | ID: mdl-27500735

ABSTRACT

We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.


Subject(s)
Brucella melitensis/drug effects , Brucella melitensis/enzymology , Brucellosis/drug therapy , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Methionine-tRNA Ligase/antagonists & inhibitors , Amino Acid Sequence , Brucella melitensis/growth & development , Brucellosis/microbiology , Drug Discovery , Inhibitory Concentration 50 , Methionine-tRNA Ligase/metabolism , Protein Conformation , Sequence Homology, Amino Acid
3.
PLoS One ; 8(1): e53851, 2013.
Article in English | MEDLINE | ID: mdl-23382856

ABSTRACT

BACKGROUND: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. CONCLUSIONS/SIGNIFICANCE: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.


Subject(s)
Burkholderia Infections/genetics , Burkholderia pseudomallei/genetics , Genomics , Metabolic Networks and Pathways/genetics , Burkholderia Infections/drug therapy , Burkholderia pseudomallei/pathogenicity , Computational Biology , Databases, Protein , Drug Design , Genes, Essential , Genome, Bacterial , Humans , Phylogeny , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL