Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125971

ABSTRACT

We have previously demonstrated that the vasopressin type 2 receptor (AVPR2) antagonist tolvaptan reduces cell proliferation and invasion and triggers apoptosis in different human cancer cell lines. To study this effect in vivo, a xenograft model of small cell lung cancer was developed in Fox1nu/nu nude mice through the subcutaneous inoculation of H69 cells, which express AVPR2. One group of mice (n = 5) was treated with tolvaptan for 60 days, whereas one group (n = 5) served as the control. A reduced growth was observed in the tolvaptan group in which the mean tumor volume was significantly smaller on day 60 compared to the control group. In the latter group, a significantly lower survival was observed. The analysis of excised tumors revealed that tolvaptan effectively inhibited the cAMP/PKA and PI3K/AKT signaling pathways. The expression of the proliferative marker proliferating cell nuclear antigen (PCNA) was significantly lower in tumors excised from tolvaptan-treated mice, whereas the expression levels of the apoptotic marker caspase-3 were higher than those in control animals. Furthermore, tumor vascularization was significantly lower in the tolvaptan group. Overall, these findings suggest that tolvaptan counteracts tumor progression in vivo and, if confirmed, might indicate a possible role of this molecule as an adjuvant in anticancer strategies.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Cell Proliferation , Lung Neoplasms , Mice, Nude , Receptors, Vasopressin , Small Cell Lung Carcinoma , Tolvaptan , Xenograft Model Antitumor Assays , Animals , Tolvaptan/pharmacology , Tolvaptan/therapeutic use , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Receptors, Vasopressin/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects
2.
Biomedicines ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39061972

ABSTRACT

The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.

3.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673964

ABSTRACT

Hyponatremia is the prevalent electrolyte imbalance in cancer patients, and it is associated with a worse outcome. Notably, emerging clinical evidence suggests that hyponatremia adversely influences the response to anticancer treatments. Therefore, this study aims to investigate how reduced extracellular [Na+] affects the responsiveness of different cancer cell lines (from human colon adenocarcinoma, neuroblastoma, and small cell lung cancer) to cisplatin and the underlying potential mechanisms. Cisplatin dose-response curves revealed higher IC50 in low [Na+] than normal [Na+]. Accordingly, cisplatin treatment was less effective in counteracting the proliferation and migration of tumor cells when cultured in low [Na+], as demonstrated by colony formation and invasion assays. In addition, the expression analysis of proteins involved in autophagosome-lysosome formation and the visualization of lysosomal areas by electron microscopy revealed that one of the main mechanisms involved in chemoresistance to cisplatin is the promotion of autophagy. In conclusion, our data first demonstrate that the antitumoral effect of cisplatin is markedly reduced in low [Na+] and that autophagy is an important mechanism of drug escape. This study indicates the role of hyponatremia in cisplatin chemoresistance and reinforces the recommendation to correct this electrolyte alteration in cancer patients.


Subject(s)
Antineoplastic Agents , Autophagy , Cell Proliferation , Cisplatin , Sodium , Humans , Cisplatin/pharmacology , Autophagy/drug effects , Sodium/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Hyponatremia/metabolism , Cell Movement/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Lysosomes/metabolism , Lysosomes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL