Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705491

ABSTRACT

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Subject(s)
Aging , Brain , Disease Models, Animal , Down Syndrome , Animals , Down Syndrome/genetics , Down Syndrome/pathology , Down Syndrome/metabolism , Aging/genetics , Aging/pathology , Aging/physiology , Mice , Male , Brain/metabolism , Brain/pathology , Female , Cognition/physiology , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Mice, Transgenic
2.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745360

ABSTRACT

A microdeletion on human chromosome 16p11.2 is one of the most common copy number variants associated with autism spectrum disorder and other neurodevelopmental disabilities. Arbaclofen, a GABA(B) receptor agonist, is a component of racemic baclofen, which is FDA-approved for treating spasticity, and has been shown to alleviate behavioral phenotypes, including recognition memory deficits, in animal models of 16p11.2 deletion. Given the lack of reproducibility sometimes observed in mouse behavioral studies, we brought together a consortium of four laboratories to study the effects of arbaclofen on behavior in three different mouse lines with deletions in the mouse region syntenic to human 16p11.2 to test the robustness of these findings. Arbaclofen rescued cognitive deficits seen in two 16p11.2 deletion mouse lines in traditional recognition memory paradigms. Using an unsupervised machine-learning approach to analyze behavior, one lab found that arbaclofen also rescued differences in exploratory behavior in the open field in 16p11.2 deletion mice. Arbaclofen was not sedating and had modest off-target behavioral effects at the doses tested. Our studies show that arbaclofen consistently rescues behavioral phenotypes in 16p11.2 deletion mice, providing support for clinical trials of arbaclofen in humans with this deletion.

3.
Front Neurosci ; 17: 1148683, 2023.
Article in English | MEDLINE | ID: mdl-37465586

ABSTRACT

Copy number variations (CNVs) of the human 16p11.2 locus are associated with several developmental/neurocognitive syndromes. Particularly, deletion and duplication of this genetic interval are found in patients with autism spectrum disorders, intellectual disability and other psychiatric traits. The high gene density associated with the region and the strong phenotypic variability of incomplete penetrance, make the study of the 16p11.2 syndromes extremely complex. To systematically study the effect of 16p11.2 CNVs and identify candidate genes and molecular mechanisms involved in the pathophysiology, mouse models were generated previously and showed learning and memory, and to some extent social deficits. To go further in understanding the social deficits caused by 16p11.2 syndromes, we engineered deletion and duplication of the homologous region to the human 16p11.2 genetic interval in two rat outbred strains, Sprague Dawley (SD) and Long Evans (LE). The 16p11.2 rat models displayed convergent defects in social behavior and in the novel object test in male carriers from both genetic backgrounds. Interestingly major pathways affecting MAPK1 and CUL3 were found altered in the rat 16p11.2 models with additional changes in males compared to females. Altogether, the consequences of the 16p11.2 genetic region dosage on social behavior are now found in three different species: humans, mice and rats. In addition, the rat models pointed to sexual dimorphism with lower severity of phenotypes in rat females compared to male mutants. This phenomenon is also observed in humans. We are convinced that the two rat models will be key to further investigating social behavior and understanding the brain mechanisms and specific brain regions that are key to controlling social behavior.

4.
Front Behav Neurosci ; 17: 1294558, 2023.
Article in English | MEDLINE | ID: mdl-38173978

ABSTRACT

Background: Autism spectrum disorders affect more than 1% of the population, impairing social communication and increasing stereotyped behaviours. A micro-deletion of the 16p11.2 BP4-BP5 chromosomic region has been identified in 1% of patients also displaying intellectual disabilities. In mouse models generated to understand the mechanisms of this deletion, learning and memory deficits were pervasive in most genetic backgrounds, while social communication deficits were only detected in some models. Methods: To complement previous studies, we itemized the social deficits in the mouse model of 16p11.2 deletion on a hybrid C57BL/6N × C3H.Pde6b+ genetic background. We examined whether behavioural deficits were visible over long-term observation periods lasting several days and nights, to parallel everyday-life assessment of patients. We recorded the individual and social behaviours of mice carrying a heterozygous deletion of the homologous 16p11.2 chromosomic region (hereafter Del/+) and their wild-type littermates from both sexes over two or three consecutive nights during social interactions of familiar mixed-genotype quartets of males and of females, and of same-genotype unfamiliar female pairs. Results: We observed that Del/+ mice of both sexes increased significantly their locomotor activity compared to wild-type littermates. In the social domain, Del/+ mice of both sexes displayed widespread deficits, even more so in males than in females in quartets of familiar individuals. In pairs, significant perturbations of the organisation of the social communication and behaviours appeared in Del/+ females. Discussion: Altogether, this suggests that, over long recording periods, the phenotype of the 16p11.2 Del/+ mice was differently affected in the locomotor activity and the social domains and between the two sexes. These findings confirm the importance of testing models in long-term conditions to provide a comprehensive view of their phenotype that will refine the study of cellular and molecular mechanisms and complement pre-clinical targeted therapeutic trials.

5.
Dis Model Mech ; 15(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36374158

ABSTRACT

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). The understanding of genotype-phenotype relationships, the identification of driver genes and various proofs of concept for therapeutics have benefited from mouse models. The premier model, named Ts(1716)65Dn/J (Ts65Dn), displayed phenotypes related to human DS features. It carries an additional minichromosome with the Mir155 to Zbtb21 region of mouse chromosome 16, homologous to Hsa21, encompassing around 90 genes, fused to the centromeric part of mouse chromosome 17 from Pisd-ps2/Scaf8 to Pde10a, containing 46 genes not related to Hsa21. Here, we report the investigation of a new model, Ts66Yah, generated by CRISPR/Cas9 without the genomic region unrelated to Hsa21 on the minichromosome. As expected, Ts66Yah replicated DS cognitive features. However, certain phenotypes related to increased activity, spatial learning and molecular signatures were changed, suggesting genetic interactions between the Mir155-Zbtb21 and Scaf8-Pde10a intervals. Thus, Ts66Yah mice have stronger construct and face validity than Ts65Dn mice for mimicking consequences of DS genetic overdosage. Furthermore, this study is the first to demonstrate genetic interactions between triplicated regions homologous to Hsa21 and others unrelated to Hsa21. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Down Syndrome , Humans , Mice , Animals , Down Syndrome/genetics , Phosphoric Diester Hydrolases
6.
Hum Mol Genet ; 30(9): 771-788, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33693642

ABSTRACT

Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype-phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3ß, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene-gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.


Subject(s)
Down Syndrome , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cognition , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/pathology , Hippocampus/metabolism , Mice , Mice, Transgenic
7.
Mol Autism ; 12(1): 1, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33436060

ABSTRACT

BACKGROUND: Gene copy number variants play an important role in the occurrence of neurodevelopmental disorders. Particularly, the deletion of the 16p11.2 locus is associated with autism spectrum disorder, intellectual disability, and several other features. Earlier studies highlighted the implication of Kctd13 genetic imbalance in 16p11.2 deletion through the regulation of the RHOA pathway. METHODS: Here, we generated a new mouse model with a small deletion of two key exons in Kctd13. Then, we targeted the RHOA pathway to rescue the cognitive phenotypes of the Kctd13 and 16p11.2 deletion mouse models in a pure genetic background. We used a chronic administration of fasudil (HA1077), an inhibitor of the Rho-associated protein kinase, for six weeks in mouse models carrying a heterozygous inactivation of Kctd13, or the deletion of the entire 16p11.2 BP4-BP5 homologous region. RESULTS: We found that the small Kctd13 heterozygous deletion induced a cognitive phenotype similar to the whole deletion of the 16p11.2 homologous region, in the Del/+ mice. We then showed that chronic fasudil treatment can restore object recognition memory in adult heterozygous mutant mice for Kctd13 and for 16p11.2 deletion. In addition, learning and memory improvement occurred in parallel to change in the RHOA pathway. LIMITATIONS: The Kcdt13 mutant line does not recapitulate all the phenotypes found in the 16p11.2 Del/+ model. In particular, the locomotor activity was not altered at 12 and 18 weeks of age and the object location memory was not defective in 18-week old mutants. Similarly, the increase in locomotor activity was not modified by the treatment in the 16p11.2 Del/+ mouse model, suggesting that other loci were involved in such defects. Rescue was observed only after four weeks of treatment but no long-term experiment has been carried out so far. Finally, we did not check the social behaviour, which requires working in another hybrid genetic background. CONCLUSION: These findings confirm KCTD13 as one target gene causing cognitive deficits in 16p11.2 deletion patients, and the relevance of the RHOA pathway as a therapeutic path for 16p11.2 deletion. In addition, they reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 models in older mice.


Subject(s)
Autistic Disorder/etiology , Autistic Disorder/metabolism , Chromosome Disorders/etiology , Chromosome Disorders/metabolism , Intellectual Disability/etiology , Intellectual Disability/metabolism , Learning , Memory , Signal Transduction/drug effects , Ubiquitin-Protein Ligase Complexes/deficiency , rhoA GTP-Binding Protein/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Alleles , Animals , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 16/metabolism , Cognition , Disease Models, Animal , Genetic Association Studies , Genetic Predisposition to Disease , Mice , Mice, Knockout , Phenotype , Treatment Outcome , rho-Associated Kinases/metabolism
8.
Sci Rep ; 9(1): 3914, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850713

ABSTRACT

Down syndrome is a common genetic disorder caused by trisomy of chromosome 21. Brain development in affected foetuses might be improved through prenatal treatment. One potential target is DYRK1A, a multifunctional kinase encoded by chromosome 21 that, when overexpressed, alters neuronal excitation-inhibition balance and increases GAD67 interneuron density. We used a green tea extract enriched in EGCG to inhibit DYRK1A function only during gestation of transgenic mice overexpressing Dyrk1a (mBACtgDyrk1a). Adult mice treated prenatally displayed reduced levels of inhibitory markers, restored VGAT1/VGLUT1 balance, and rescued density of GAD67 interneurons. Similar results for gabaergic and glutamatergic markers and interneuron density were obtained in Dp(16)1Yey mice, trisomic for 140 chromosome 21 orthologs; thus, prenatal EGCG exhibits efficacy in a more complex DS model. Finally, cognitive and behaviour testing showed that adult Dp(16)1Yey mice treated prenatally had improved novel object recognition memory but do not show improvement with Y maze paradigm. These findings provide empirical support for a prenatal intervention that targets specific neural circuitries.


Subject(s)
Catechin/analogs & derivatives , Down Syndrome/diet therapy , Glutamate Decarboxylase/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Tea , Animals , Brain/embryology , Brain/growth & development , Brain/physiopathology , Catechin/administration & dosage , Cognition , Disease Models, Animal , Down Syndrome/physiopathology , Down Syndrome/psychology , Female , Interneurons/pathology , Maternal-Fetal Exchange , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
9.
Science ; 354(6314): 909-912, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27856912

ABSTRACT

DNA methylation is prevalent in mammalian genomes and plays a central role in the epigenetic control of development. The mammalian DNA methylation machinery is thought to be composed of three DNA methyltransferase enzymes (DNMT1, DNMT3A, and DNMT3B) and one cofactor (DNMT3L). Here, we describe the discovery of Dnmt3C, a de novo DNA methyltransferase gene that evolved via a duplication of Dnmt3B in rodent genomes and was previously annotated as a pseudogene. We show that DNMT3C is the enzyme responsible for methylating the promoters of evolutionarily young retrotransposons in the male germ line and that this specialized activity is required for mouse fertility. DNMT3C reveals the plasticity of the mammalian DNA methylation system and expands the scope of the mechanisms involved in the epigenetic control of retrotransposons.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Mutagenesis/genetics , Promoter Regions, Genetic , Retroelements , Spermatogonia/enzymology , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/classification , DNA (Cytosine-5-)-Methyltransferases/genetics , Ethylnitrosourea/pharmacology , Gene Knockout Techniques , Hypogonadism/chemically induced , Hypogonadism/genetics , Hypogonadism/pathology , Male , Mice , Phylogeny , Spermatogonia/drug effects , Testis/drug effects , Testis/pathology
10.
Dis Model Mech ; 8(6): 623-34, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26035870

ABSTRACT

Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Monosomy/genetics , Sequence Deletion/genetics , Animals , Animals, Newborn , Behavior, Animal , Body Weight , Chromosomes, Human, Pair 21/genetics , Cluster Analysis , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Models, Animal , Exploratory Behavior , Fetus/abnormalities , Fetus/pathology , Gene Dosage , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Hippocampus/pathology , Humans , Maze Learning , Memory , Mice , Molecular Sequence Annotation , Motor Activity , Oligonucleotide Array Sequence Analysis , Software , Spatial Learning , Transcriptome/genetics
11.
Genetics ; 197(3): 899-912, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752061

ABSTRACT

Down syndrome (DS) is due to increased copy number of human chromosome 21. The contribution of different genetic regions has been tested using mouse models. As shown previously, the Abcg1-U2af1 genetic region contributes to cognitive defects in working and short-term recognition memory in Down syndrome mouse models. Here we analyzed the impact of monosomy of the same genetic interval, using a new mouse model, named Ms2Yah. We used several cognitive paradigms and did not detect defects in the object recognition or the Morris water maze tests. However, surprisingly, Ms2Yah mice displayed increased associative memory in a pure contextual fear-conditioning test and decreased social novelty interaction along with a larger long-term potentiation recorded in the CA1 area following stimulation of Schaffer collaterals. Whole-genome expression studies carried out on hippocampus showed that the transcription of only a small number of genes is affected, mainly from the genetic interval (Cbs, Rsph1, Wdr4), with a few additional ones, including the postsynaptic Gabrr2, Gabbr1, Grid2p, Park2, and Dlg1 and the components of the Ubiquitin-mediated proteolysis (Anapc1, Rnf7, Huwe1, Park2). The Abcg1-U2af1 region is undeniably encompassing dosage-sensitive genes or elements whose change in copy number directly affects learning and memory, synaptic function, and autistic related behavior.


Subject(s)
Cognition , Down Syndrome/genetics , Down Syndrome/physiopathology , Genome , Hippocampus/physiopathology , Monosomy/genetics , Neuronal Plasticity , Animals , Behavior, Animal , Cluster Analysis , Conditioning, Psychological , Disease Models, Animal , Exploratory Behavior , Gene Expression Regulation , Hippocampus/pathology , Learning , Long-Term Potentiation , Mice, Inbred C57BL , Monosomy/physiopathology , Motor Activity , Social Behavior
12.
PLoS Genet ; 8(5): e1002724, 2012 May.
Article in English | MEDLINE | ID: mdl-22693452

ABSTRACT

Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Down Syndrome , Gene Dosage , Heart Defects, Congenital , Animals , Congenital Abnormalities/genetics , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/metabolism , Electrocardiography , Gene Expression Regulation , Heart Block/physiopathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
13.
PLoS One ; 6(12): e28537, 2011.
Article in English | MEDLINE | ID: mdl-22194846

ABSTRACT

Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep) or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep) with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline) that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.


Subject(s)
Mutation, Missense/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA/metabolism , Skull/growth & development , Skull/metabolism , Amino Acid Sequence , Animals , Base Sequence , Body Weight , Brain/metabolism , DNA Mutational Analysis , Enzyme Activation , Genes, Recessive/genetics , Mice , Mice, Mutant Strains , Molecular Sequence Data , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Stress, Physiological
14.
Mamm Genome ; 22(11-12): 674-84, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21953411

ABSTRACT

Down syndrome (DS) is the most frequent genetic disorder leading to intellectual disabilities and is caused by three copies of human chromosome 21. Mouse models are widely used to better understand the physiopathology in DS or to test new therapeutic approaches. The older and the most widely used mouse models are the trisomic Ts65Dn and the Ts1Cje mice. They display deficits similar to those observed in DS people, such as those in behavior and cognition or in neuronal abnormalities. The Ts65Dn model is currently used for further therapeutic assessment of candidate drugs. In both models, the trisomy was induced by reciprocal chromosomal translocations that were not further characterized. Using a comparative genomic approach, we have been able to locate precisely the translocation breakpoint in these two models and we took advantage of this finding to derive a new and more efficient Ts65Dn genotyping strategy. Furthermore, we found that the translocations introduce additional aneuploidy in both models, with a monosomy of seven genes in the most telomeric part of mouse chromosome 12 in the Ts1Cje and a trisomy of 60 centromeric genes on mouse chromosome 17 in the Ts65Dn. Finally, we report here the overexpression of the newly found aneuploid genes in the Ts65Dn heart and we discuss their potential impact on the validity of the DS model.


Subject(s)
Disease Models, Animal , Down Syndrome/genetics , Translocation, Genetic , Trisomy , Animals , Cell Line , Comparative Genomic Hybridization , DNA Breaks , Down Syndrome/metabolism , Down Syndrome/pathology , Gene Duplication , Genotype , Mice , Mice, Inbred BALB C , Mutation , Myocardium/metabolism , Oligonucleotide Array Sequence Analysis
15.
BMC Dev Biol ; 7: 81, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17612398

ABSTRACT

BACKGROUND: The Kit gene encodes a receptor tyrosine kinase involved in various biological processes including melanogenesis, hematopoiesis and gametogenesis in mice and human. A large number of Kit mutants has been described so far showing the pleiotropic phenotypes associated with partial loss-of-function of the gene. Hypomorphic mutations can induce a light coat color phenotype while complete lack of KIT function interferes with embryogenesis. Interestingly several intermediate hypomorphic mutations induced in addition growth retardation and post-natal mortality. RESULTS: In this report we investigated the post-natal role of Kit by using a panel of chemically-induced hypomorphic mutations recently isolated in the mouse. We found that, in addition to the classical phenotypes, mutations of Kit induced juvenile steatosis, associated with the downregulation of the three genes, VldlR, Lpin1 and Lpl, controlling lipid metabolism in the post-natal liver. Hence, Kit loss-of-functions mimicked the inactivation of genes controlling the hepatic metabolism of triglycerides, the major source of energy from maternal milk, leading to growth and viability defects during neonatal development. CONCLUSION: This is a first report involving KIT in the control of lipid metabolism in neonates and opening new perspectives for understanding juvenile steatosis. Moreover, it reinforces the role of Kit during development of the liver and underscores the caution that should be exerted in using KIT inhibitors during anti-cancer treatment.


Subject(s)
Gene Expression Regulation, Developmental , Lipid Metabolism/genetics , Liver/growth & development , Proto-Oncogene Proteins c-kit/genetics , Alleles , Anemia/genetics , Anemia/metabolism , Animals , Animals, Newborn , Fatty Liver/genetics , Fatty Liver/metabolism , Fetal Stem Cells/metabolism , Liver/embryology , Liver/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mutation , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
16.
Biol Cell ; 97(10): 787-98, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15730345

ABSTRACT

BACKGROUND INFORMATION: The sensing of head movement in mammals depends upon the vestibular endorgan of the inner ear, a complex structure made up of the semicircular canals and otoliths. Due to the similarity between the human and mouse vestibular apparatus, the analysis of mutant mouse is a valuable strategy aiming to identify genes involved in the control of balance and movement. RESULTS: In the course of a genome-wide chemical-mutagenesis programme, we isolated a recessive mutation, named ied (inner ear defect), which induced a severe loss-of-balance. A detailed phenotypic analysis of the mutant mice demonstrates that the balance impairment does not affect the motor activity and can be rescued, in part, by training, despite a complete agenesis of otoconia in the utricule and the saccule of the inner ear. Molecular characterization of the ied mutation revealed a transversion that affects the splicing of the second exon of the Otopetrin1 gene located on mouse chromosome 5. The consequence of such a mutation leads to a disruption of the transcription of the gene. CONCLUSIONS: The identification of the ied knock-down allele strengthens the role of the Otopetrin1 in the sensing of balance. Moreover, the rescue of the ied mutant phenotype in specific behavioural tasks confirmed that other sensory inputs or neural plasticity can compensate, to some extent, for the loss-of-balance. In the future, the ied mutant mice might be helpful to study the genetic control of the compensation strategies developed by organisms to counteract balance defects.


Subject(s)
Aging/genetics , Alleles , Chromosome Inversion , Genes, Recessive/genetics , Membrane Proteins/genetics , Postural Balance/physiology , Acoustic Maculae/metabolism , Acoustic Maculae/pathology , Aging/metabolism , Animals , Exons/genetics , Female , Male , Membrane Proteins/metabolism , Mice , Mice, Neurologic Mutants , Mutagenesis , Physical Conditioning, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...