Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 57: e13172, 2024.
Article in English | MEDLINE | ID: mdl-38808884

ABSTRACT

Accumulation of visceral adipose tissue is associated with metabolic syndrome (MS), insulin resistance, and dyslipidemia. Here we examined several morphometric and biochemical parameters linked to MS in a rodent litter size reduction model, and how a 30-day fish oil (FO) supplementation affected these parameters. On day 3 post-birth, pups were divided into groups of ten or three. On day 22, rats were split into control (C) and small litter (SL) until 60 days old. Then, after metabolic disturbance and obesity were confirmed, FO supplementation started for 30 days and the new groups were named control (C), FO supplemented (FO), obese (Ob), and obese FO supplemented (ObFO). Comparison was performed by Student t-test or 2-way ANOVA followed by Tukey post hoc test. At the end of the 60-day period, SL rats were hyperphagic, obese, hypoinsulinemic, normoglycemic, and had high visceral fat depot and high interleukin (IL)-6 plasma concentration. Obese rats at 90 days of age were fatter, hyperphagic, hyperglycemic, hypertriacylgliceromic, hipoinsulinemic, with low innate immune response. IL-6 production ex vivo was higher, but in plasma it was not different from the control group. FO supplementation brought all biochemical changes to normal values, normalized food intake, and reduced body weight and fat mass in obese rats. The innate immune response was improved but still not as efficient as in lean animals. Our results suggested that as soon MS appears, FO supplementation must be used to ameliorate the morpho- and biochemical effects caused by MS and improve the innate immune response.


Subject(s)
Dietary Supplements , Fish Oils , Metabolic Syndrome , Obesity , Rats, Wistar , Animals , Metabolic Syndrome/diet therapy , Fish Oils/administration & dosage , Obesity/diet therapy , Obesity/metabolism , Male , Rats , Insulin Resistance , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/drug effects , Interleukin-6/blood , Disease Models, Animal , Female
2.
Braz. j. med. biol. res ; 57: e13172, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557326

ABSTRACT

Accumulation of visceral adipose tissue is associated with metabolic syndrome (MS), insulin resistance, and dyslipidemia. Here we examined several morphometric and biochemical parameters linked to MS in a rodent litter size reduction model, and how a 30-day fish oil (FO) supplementation affected these parameters. On day 3 post-birth, pups were divided into groups of ten or three. On day 22, rats were split into control (C) and small litter (SL) until 60 days old. Then, after metabolic disturbance and obesity were confirmed, FO supplementation started for 30 days and the new groups were named control (C), FO supplemented (FO), obese (Ob), and obese FO supplemented (ObFO). Comparison was performed by Student t-test or 2-way ANOVA followed by Tukey post hoc test. At the end of the 60-day period, SL rats were hyperphagic, obese, hypoinsulinemic, normoglycemic, and had high visceral fat depot and high interleukin (IL)-6 plasma concentration. Obese rats at 90 days of age were fatter, hyperphagic, hyperglycemic, hypertriacylgliceromic, hipoinsulinemic, with low innate immune response. IL-6 production ex vivo was higher, but in plasma it was not different from the control group. FO supplementation brought all biochemical changes to normal values, normalized food intake, and reduced body weight and fat mass in obese rats. The innate immune response was improved but still not as efficient as in lean animals. Our results suggested that as soon MS appears, FO supplementation must be used to ameliorate the morpho- and biochemical effects caused by MS and improve the innate immune response.

3.
Braz J Med Biol Res ; 55: e11987, 2022.
Article in English | MEDLINE | ID: mdl-35857997

ABSTRACT

Early childhood obesity increases the risk of developing metabolic diseases. We examined the early introduction of exercise in small-litter obese-induced rats (SL) on glucose metabolism in the epididymal adipose tissue (AT) and soleus muscle (SM). On day 3 post-birth, pups were divided into groups of ten or three (SL). On day 22, rats were split into sedentary (S and SLS) and exercise (E and SLE) groups. The rats swam three times/week carrying a load for 30 min. In the first week, they swam without a load; in the 2nd week, they carried a load equivalent to 2% of their body weight; from the 3rd week to the final week, they carried a 5% body load. At 85 days of age, an insulin tolerance test was performed in some rats. At 90 days of age, rats were killed, and blood was harvested for plasma glucose, cholesterol, and triacylglycerol measurements. Mesenteric, epididymal, retroperitoneal, and brown adipose tissues were removed and weighed. SM and AT were incubated in the Krebs-Ringer bicarbonate buffer, 5.5 mM glucose for 1 h with or without 10 mU/mL insulin. Comparison between the groups was performed by 3-way ANOVA followed by the Tukey post-hoc test. Sedentary, overfed rats had greater body mass, more visceral fat, lower lactate production, and insulin resistance. Early introduction of exercise reduced plasma cholesterol and contained the deposition of white adipose tissue and insulin resistance. In conclusion, the early introduction of exercise prevents the effects of obesity on glucose metabolism in adulthood in this rat model.


Subject(s)
Insulin Resistance , Pediatric Obesity , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Child , Cholesterol/metabolism , Glucose/metabolism , Humans , Insulin , Pediatric Obesity/metabolism , Rats
4.
Braz. j. med. biol. res ; 55: e11987, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1384144

ABSTRACT

Early childhood obesity increases the risk of developing metabolic diseases. We examined the early introduction of exercise in small-litter obese-induced rats (SL) on glucose metabolism in the epididymal adipose tissue (AT) and soleus muscle (SM). On day 3 post-birth, pups were divided into groups of ten or three (SL). On day 22, rats were split into sedentary (S and SLS) and exercise (E and SLE) groups. The rats swam three times/week carrying a load for 30 min. In the first week, they swam without a load; in the 2nd week, they carried a load equivalent to 2% of their body weight; from the 3rd week to the final week, they carried a 5% body load. At 85 days of age, an insulin tolerance test was performed in some rats. At 90 days of age, rats were killed, and blood was harvested for plasma glucose, cholesterol, and triacylglycerol measurements. Mesenteric, epididymal, retroperitoneal, and brown adipose tissues were removed and weighed. SM and AT were incubated in the Krebs-Ringer bicarbonate buffer, 5.5 mM glucose for 1 h with or without 10 mU/mL insulin. Comparison between the groups was performed by 3-way ANOVA followed by the Tukey post-hoc test. Sedentary, overfed rats had greater body mass, more visceral fat, lower lactate production, and insulin resistance. Early introduction of exercise reduced plasma cholesterol and contained the deposition of white adipose tissue and insulin resistance. In conclusion, the early introduction of exercise prevents the effects of obesity on glucose metabolism in adulthood in this rat model.

5.
Hum Exp Toxicol ; 33(1): 54-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23536518

ABSTRACT

It has been hypothesized that oils containing high levels of omega-3 polyunsaturated fatty acids, such as canola and fish oil, could counteract some of the adverse effects induced by phthalates. In the present study, the influence of different oily vehicles on di-butyl phthalate (DBP)-induced testicular toxicity and lipid profile was investigated. Pregnant Wistar rats were treated by oral gavage from gestation days 13 to 20 with DBP (500 mg/kg/day) diluted in three different vehicles: corn, canola or fish oil. Male fetuses were analyzed on gestation day 20. DBP exposure lowered intratesticular testosterone levels and anogenital distance, regardless of the vehicle used. The percentage of seminiferous cords containing multinucleated gonocytes and cord diameter was increased in DBP-exposed groups, compared with vehicle controls, with no difference between the three DBP-exposed groups. Clustering of Leydig cells was seen in all DBP groups. Lipid profile indicated that administration of canola and fish oil can increase the content of omega-3 fatty acids in rat testis. However, content of omega-3 was diminished in DBP-treated groups. Overall, our results indicate that different oily vehicles did not alter fetal rat testicular toxicity induced by a high DBP dose.


Subject(s)
Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Fatty Acids, Omega-3/metabolism , Lipid Metabolism/drug effects , Maternal Exposure/adverse effects , Pharmaceutical Vehicles/metabolism , Testis/drug effects , Animals , Corn Oil/chemistry , Corn Oil/metabolism , Dibutyl Phthalate/administration & dosage , Endocrine Disruptors/administration & dosage , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Omega-3/chemistry , Female , Fetal Development/drug effects , Fish Oils/chemistry , Fish Oils/metabolism , Male , Pharmaceutical Vehicles/chemistry , Plasticizers/administration & dosage , Plasticizers/toxicity , Pregnancy , Rapeseed Oil , Rats , Sex Determination Processes/drug effects , Testis/embryology , Testis/metabolism , Testosterone/metabolism
6.
Braz J Med Biol Res ; 46(8): 696-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24036940

ABSTRACT

We investigated the effect of fish oil (FO) supplementation on tumor growth, cyclooxygenase 2 (COX-2), peroxisome proliferator-activated receptor gamma (PPARγ), and RelA gene and protein expression in Walker 256 tumor-bearing rats. Male Wistar rats (70 days old) were fed with regular chow (group W) or chow supplemented with 1 g/kg body weight FO daily (group WFO) until they reached 100 days of age. Both groups were then inoculated with a suspension of Walker 256 ascitic tumor cells (3 × 10(7) cells/mL). After 14 days the rats were killed, total RNA was isolated from the tumor tissue, and relative mRNA expression was measured using the 2(-ΔΔCT) method. FO significantly decreased tumor growth (W=13.18 ± 1.58 vs WFO=5.40 ± 0.88 g, P<0.05). FO supplementation also resulted in a significant decrease in COX-2 (W=100.1 ± 1.62 vs WFO=59.39 ± 5.53, P<0.001) and PPARγ (W=100.4 ± 1.04 vs WFO=88.22 ± 1.46, P<0.05) protein expression. Relative mRNA expression was W=1.06 ± 0.022 vs WFO=0.31 ± 0.04 (P<0.001) for COX-2, W=1.08 ± 0.02 vs WFO=0.52 ± 0.08 (P<0.001) for PPARγ, and W=1.04 ± 0.02 vs WFO=0.82 ± 0.04 (P<0.05) for RelA. FO reduced tumor growth by attenuating inflammatory gene expression associated with carcinogenesis.


Subject(s)
Carcinoma 256, Walker/genetics , Cell Proliferation/drug effects , Cyclooxygenase 2/genetics , Fish Oils/pharmacology , PPAR gamma/genetics , Transcription Factor RelA/genetics , Animals , Carcinoma 256, Walker/metabolism , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fish Oils/chemistry , Growth Inhibitors/pharmacology , Immunoblotting , Male , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transcription, Genetic/drug effects
7.
Braz. j. med. biol. res ; 46(8): 696-699, ago. 2013. graf
Article in English | LILACS | ID: lil-684534

ABSTRACT

We investigated the effect of fish oil (FO) supplementation on tumor growth, cyclooxygenase 2 (COX-2), peroxisome proliferator-activated receptor gamma (PPARγ), and RelA gene and protein expression in Walker 256 tumor-bearing rats. Male Wistar rats (70 days old) were fed with regular chow (group W) or chow supplemented with 1 g/kg body weight FO daily (group WFO) until they reached 100 days of age. Both groups were then inoculated with a suspension of Walker 256 ascitic tumor cells (3×107 cells/mL). After 14 days the rats were killed, total RNA was isolated from the tumor tissue, and relative mRNA expression was measured using the 2-ΔΔCT method. FO significantly decreased tumor growth (W=13.18±1.58 vs WFO=5.40±0.88 g, P<0.05). FO supplementation also resulted in a significant decrease in COX-2 (W=100.1±1.62 vs WFO=59.39±5.53, P<0.001) and PPARγ (W=100.4±1.04 vs WFO=88.22±1.46, P<0.05) protein expression. Relative mRNA expression was W=1.06±0.022 vs WFO=0.31±0.04 (P<0.001) for COX-2, W=1.08±0.02 vs WFO=0.52±0.08 (P<0.001) for PPARγ, and W=1.04±0.02 vs WFO=0.82±0.04 (P<0.05) for RelA. FO reduced tumor growth by attenuating inflammatory gene expression associated with carcinogenesis.


Subject(s)
Animals , Male , /genetics , Cell Proliferation/drug effects , /genetics , Fish Oils/pharmacology , PPAR gamma/genetics , Transcription Factor RelA/genetics , /metabolism , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fish Oils/chemistry , Growth Inhibitors/pharmacology , Immunoblotting , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transcription, Genetic/drug effects
8.
Nutr Neurosci ; 7(2): 91-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15279495

ABSTRACT

In the last 100 years major depression has increased worldwide. In this study we provided coconut fat (CF, rich in saturated fatty acids) or fish oil (FO, rich in n-3 polyunsaturated fatty acids) to female rats throughout pregnancy and lactation and then to their offspring post-weaning and examined lipid brain profile and the possible effect of FO as antidepressant agent in the offspring in adulthood (F1). Rats were submitted to forced swimming test, elevated plus maze, Morris water maze and open field. Peroxidation rate in the cerebral cortex and hippocampus were measured. Docosahexaenoic acid (DHA) concentration in dam's milk, eicosapentaenoic acid (EPA) and DHA concentration in hippocampus and cerebral cortex from F1 rats FO supplemented increased significantly when compared to control (C) and CF rats. Arachidonic acid/EPA ratio in the cerebral cortex and hippocampus decreased in rats submitted to forced swimming test. Peroxidation rate were not different between the groups. Immobility time in the forced swimming test in FO group was reduced (p < 0.01) when compared to C and CF rats. We conclude that lifelong intake of FO was able to induce an antidepressant effect with EPA and DHA concentration increased in the cerebral cortex and hippocampus.


Subject(s)
Antidepressive Agents/pharmacology , Cerebral Cortex/physiology , Fish Oils/pharmacology , Hippocampus/physiology , Maze Learning/physiology , Motor Activity/physiology , Animals , Cerebral Cortex/drug effects , Dietary Supplements , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Female , Hippocampus/drug effects , Lipid Peroxidation , Maze Learning/drug effects , Milk/chemistry , Motor Activity/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL