Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Rep ; 13(1): 9331, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291276

ABSTRACT

Ductal carcinoma in-situ (DCIS) accounts for 20-25% of all new breast cancer diagnoses. DCIS has an uncertain risk of progression to invasive breast cancer and a lack of predictive biomarkers may result in relatively high levels (~ 75%) of overtreatment. To identify unique prognostic biomarkers of invasive progression, crystallographic and chemical features of DCIS microcalcifications have been explored. Samples from patients with at least 5-years of follow up and no known recurrence (174 calcifications in 67 patients) or ipsilateral invasive breast cancer recurrence (179 microcalcifications in 57 patients) were studied. Significant differences were noted between the two groups including whitlockite relative mass, hydroxyapatite and whitlockite crystal maturity and, elementally, sodium to calcium ion ratio. A preliminary predictive model for DCIS to invasive cancer progression was developed from these parameters with an AUC of 0.797. These results provide insights into the differing DCIS tissue microenvironments, and how these impact microcalcification formation.


Subject(s)
Breast Neoplasms , Calcinosis , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Ductal, Breast/pathology , Crystallography , Calcinosis/diagnostic imaging , Calcinosis/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Tumor Microenvironment
2.
Clin Pathol ; 15: 2632010X221088960, 2022.
Article in English | MEDLINE | ID: mdl-35509812

ABSTRACT

Purpose: The differential diagnosis of epithelial misplacement from invasive cancer in the colon is a challenging endeavour, augmented by the introduction of bowel cancer population screening. The main aim of the work is to test, as a proof-of concept study, the ability of the infrared spectroscopic imaging approach to differentiate epithelial misplacement from adenocarcinoma in sigmoid colonic adenomatous polyps. Methods: Ten samples from each of the four diagnostic groups, normal colonic mucosa, adenomatous polyps with low grade dysplasia, epithelial misplacement in adenomatous polyps and adenocarcinoma, were analysed using IR spectroscopic imaging and data processing methods. IR spectral images were subjected to data pre-processing and cluster analysis based segmentation to identify epithelial, connective tissue and stromal regions. Statistical analysis was carried out using principal component analysis and linear discriminant analysis based cross validation, to classify spectral features according to the pathology, and the diagnostic attributes were compared. Results: The combined 4-group classification model on an average showed a sensitivity of 64%, a specificity of 88% and an accuracy of 76% for prediction based on a 'single spectrum', whilst a 'majority-vote' prediction on an average showed a sensitivity of 73%, a specificity of 90% and an accuracy of 82%. The 2-group model, for the differential diagnosis of epithelial misplacement versus adenocarcinoma, showed an average sensitivity and specificity of 82.5% for prediction based on a 'single spectrum' whilst a 'majority-vote' classification showed an average sensitivity and specificity of 90%. A 92% area under the curve (AUC) value was obtained when evaluating the classifier using the Receiver Operating Characteristics (ROC) curves. Conclusions: IR spectroscopy shows promise in its ability to differentiate epithelial misplacement from adenocarcinoma in tissue sections, considered as one of the most challenging endeavours in population-wide diagnostic histopathology. Further studies with larger series, including cases with challenging diagnostic features are required to ascertain the capability of this modern digital pathology approach. In the long-term, IR spectroscopy based pathology which is relatively low-cost and rapid, could be a promising endeavour to consider for integration into the existing histopathology pathway, in particular for population based screening programmes where large number of samples are scrutinised.

3.
Analyst ; 147(8): 1641-1654, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35311860

ABSTRACT

Ductal carcinoma in situ (DCIS) is frequently associated with breast calcification. This study combines multiple analytical techniques to investigate the heterogeneity of these calcifications at the micrometre scale. X-ray diffraction, scanning electron microscopy and Raman and Fourier-transform infrared spectroscopy were used to determine the physicochemical and crystallographic properties of type II breast calcifications located in formalin fixed paraffin embedded DCIS breast tissue samples. Multiple calcium phosphate phases were identified across the calcifications, distributed in different patterns. Hydroxyapatite was the dominant mineral, with magnesium whitlockite found at the calcification edge. Amorphous calcium phosphate and octacalcium phosphate were also identified close to the calcification edge at the apparent mineral/matrix barrier. Crystallographic features of hydroxyapatite also varied across the calcifications, with higher crystallinity centrally, and highest carbonate substitution at the calcification edge. Protein was also differentially distributed across the calcification and the surrounding soft tissue, with collagen and ß-pleated protein features present to differing extents. Combination of analytical techniques in this study was essential to understand the heterogeneity of breast calcifications and how this may link crystallographic and physicochemical properties of calcifications to the surrounding tissue microenvironment.


Subject(s)
Breast Neoplasms , Calcinosis , Carcinoma, Intraductal, Noninfiltrating , Calcinosis/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Durapatite , Female , Humans , Spectroscopy, Fourier Transform Infrared , Tumor Microenvironment , X-Ray Diffraction
4.
Biomed Opt Express ; 13(12): 6373-6388, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589581

ABSTRACT

Information about the structure and composition of biopsy specimens can assist in disease monitoring and diagnosis. In principle, this can be acquired from Raman and infrared (IR) hyperspectral images (HSIs) that encode information about how a sample's constituent molecules are arranged in space. Each tissue section/component is defined by a unique combination of spatial and spectral features, but given the high dimensionality of HSI datasets, extracting and utilising them to segment images is non-trivial. Here, we show how networks based on deep convolutional autoencoders (CAEs) can perform this task in an end-to-end fashion by first detecting and compressing relevant features from patches of the HSI into low-dimensional latent vectors, and then performing a clustering step that groups patches containing similar spatio-spectral features together. We showcase the advantages of using this end-to-end spatio-spectral segmentation approach compared to i) the same spatio-spectral technique not trained in an end-to-end manner, and ii) a method that only utilises spectral features (spectral k-means) using simulated HSIs of porcine tissue as test examples. Secondly, we describe the potential advantages/limitations of using three different CAE architectures: a generic 2D CAE, a generic 3D CAE, and a 2D convolutional encoder-decoder architecture inspired by the recently proposed UwU-net that is specialised for extracting features from HSI data. We assess their performance on IR HSIs of real colon samples. We find that all architectures are capable of producing segmentations that show good correspondence with HE stained adjacent tissue slices used as approximate ground truths, indicating the robustness of the CAE-driven spatio-spectral clustering approach for segmenting biomedical HSI data. Additionally, we stress the need for more accurate ground truth information to enable a precise comparison of the advantages offered by each architecture.

5.
Sci Rep ; 11(1): 22915, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34824328

ABSTRACT

The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 [Formula: see text]C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 [Formula: see text]C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.

6.
Lab Invest ; 100(8): 1102-1110, 2020 08.
Article in English | MEDLINE | ID: mdl-32203151

ABSTRACT

Biological materials presenting early signs of cancer would be beneficial for cancer screening/diagnosis. In this respect, the suitability of potentially exploiting mucus in colorectal cancer was tested using infrared spectroscopy in combination with statistical modeling. Twenty-six paraffinized colon tissue biopsy sections containing mucus regions from 20 individuals (10 normal and 16 cancerous) were measured using mid-infrared spectroscopic imaging. A digital de-paraffinization, followed by cluster analysis driven digital color-coded multi-staining segmented the infrared images into various histopathological features such as epithelium, connective tissue, stroma, and mucus regions within the tissue sections. Principal component analysis followed by supervised linear discriminant analysis was carried out on pure mucus and epithelial spectra from normal and cancerous regions of the tissue. For the mucus-based classification, a sensitivity of 96%, a specificity of 83%, and an area under the curve performance of 95% was obtained. For the epithelial tissue-based classification, a sensitivity of 72%, a specificity of 88%, and an area under the curve performance of 89% was obtained. The mucus spectral profiles further showed contributions indicative of glycans including that of sialic acid changes between these pathology groups. The study demonstrates that infrared spectroscopic analysis of mucus discriminates colorectal cancers with high sensitivity. This concept could be exploited to develop screening/diagnostic approaches complementary to histopathology.


Subject(s)
Colonic Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Mucus/metabolism , Spectrophotometry, Infrared/methods , Cluster Analysis , Colon/metabolism , Colon/pathology , Colonic Neoplasms/metabolism , Colorectal Neoplasms/metabolism , Discriminant Analysis , Humans , Intestines/chemistry , Intestines/pathology , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Reproducibility of Results , Sensitivity and Specificity
7.
J Mammary Gland Biol Neoplasia ; 24(4): 333-342, 2019 12.
Article in English | MEDLINE | ID: mdl-31807966

ABSTRACT

Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign - B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.


Subject(s)
Breast Neoplasms/pathology , Calcinosis/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Female , Humans , X-Ray Diffraction
8.
Comput Biol Med ; 100: 50-61, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29975855

ABSTRACT

Fourier transform infrared (FTIR) spectroscopy is a highly versatile tool for cell and tissue analysis. Modern commercial FTIR microspectroscopes allow the acquisition of good-quality hyperspectral images from cytopathological samples within relatively short times. This study aims at assessing the abilities of FTIR spectra to discriminate different types of cultured skin cell lines by different computer analysis technologies. In particular, 22700 single skin cells, belonging to two non-tumoral and two tumoral cell lines, were analysed. These cells were prepared in three different batches that included each cell type. Different spectral preprocessing and classification strategies were considered, including the current standard approaches to reduce Mie scattering artefacts. Special care was taken for the optimisation, training and evaluation of the learning models in order to avoid possible overfitting. Excellent classification performance (balanced accuracy between 0.85 and 0.95) was achieved when the algorithms were trained and tested with the cells from the same batch. When cells from different batches were used for training and testing the balanced accuracy reached values between 0.35 and 0.6, demonstrating the strong influence of sample preparation on the results and comparability of cell FTIR spectra. A deep study of the most optimistic results was performed in order to identify perturbations that influenced the final classification.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Skin Neoplasms , Skin/pathology , Animals , Cell Line, Tumor , Humans , Mice , NIH 3T3 Cells , Skin Neoplasms/classification , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared
9.
Opt Lett ; 43(5): 999-1002, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489770

ABSTRACT

We present, to the best of our knowledge, the first demonstration of mid-infrared supercontinuum (SC) tissue imaging at wavelengths beyond 5 µm using a fiber-coupled SC source spanning 2-7.5 µm. The SC was generated in a tapered large-mode-area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for diffraction-limited imaging performance. Tissue imaging was demonstrated in transmission at selected wavelengths between 5.7 (1754 cm-1) and 7.3 µm (1370 cm-1) by point scanning over a sub-millimeter region of colon tissue, and the results were compared to images obtained from a commercial instrument.

10.
Analyst ; 143(4): 850-857, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-29230441

ABSTRACT

Recent work using micro-Fourier transform infrared (µFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used µFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Lipids/analysis , Plaque, Amyloid/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Animals , Brain/diagnostic imaging , Immunohistochemistry , Male , Mice , Mice, Transgenic , Spectroscopy, Fourier Transform Infrared
11.
J Biophotonics ; 9(7): 694-700, 2016 07.
Article in English | MEDLINE | ID: mdl-27088552

ABSTRACT

Barrett's oesophagus is a condition characterized by a change in the lining of the oesophagus that markedly increases the risk of adenocarcinoma. We demonstrate the first site-matched application of Brillouin microscopy, Raman microscopy and FTIR micro-spectroscopic imaging to ex-vivo epithelial tissue - Barrett's oesophagus. The mechanical and chemical characters of the epithelium were assessed in histological sections from a patient subjected to endoscopic oesophageal biopsy. Previous studies have shown that both these properties change within the oesophageal wall, owing to the presence of distinct cellular and extracellular constituents which are putatively affected by oesophageal cancer. Brillouin microscopy enables maps of elasticity of the epithelium to be obtained, whilst Raman and FTIR imaging provide 'chemical images' without the need for labelling or staining. This site-matched approach provides a valuable platform for investigating the structure, biomechanics and composition of complex heterogeneous systems. A combined Brillouin-Raman device has potential for in-vivo diagnosis of pathology. First application of site-matched micro Brillouin, Raman and FTIR spectroscopic imaging to epithelial tissue in Barrett's oesophagus.


Subject(s)
Barrett Esophagus/diagnostic imaging , Epithelium/diagnostic imaging , Adenocarcinoma , Esophageal Neoplasms , Esophagoscopy , Humans , Microscopy/methods , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
12.
Analyst ; 141(2): 630-9, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26549223

ABSTRACT

Novel technologies that could complement current histopathology based cancer diagnostic methods are under examination. In this endeavour mid-infrared spectroscopic imaging is a promising candidate that can provide valuable bio-molecular information from unstained cells and tissues in a rapid and a non-destructive manner. With this imaging technique, the biochemical information obtained from smaller areas of the tissues can be of clinical significance and hence the measured pixel size. Until recently it was difficult to obtain spectral data from pixels below around 5 microns square. High NA objectives have been utilised to reduce the ideal diffraction limit, enabling for the first time elucidation of subcellular features. In this context, the ability of high-resolution imaging, obtained using novel high-magnification optics retro-fitted onto a bench top FTIR imaging system, to characterise histopathological features in colonic tissues has been tested. Formalin fixed paraffin embedded colon tissues from three different pathologies were imaged directly using the conventional and the high-magnification imaging set-ups. To circumvent chemical de-paraffinization protocols, an extended multiplicative signal correction (EMSC) based electronic de-paraffinization was carried out on all the infrared images. Multivariate analysis of the high-magnification infrared imaging data showed a detailed information of the histological features of the colon tissue in comparison to conventional imaging. Furthermore, high-magnification imaging has enabled a label-free characterization of the mucin rich goblet cell features in an unprecedented manner. The current study demonstrates the applicability of high-magnification FTIR imaging to characterise complex tissues on a smaller scale that could be of clinical significance.


Subject(s)
Colon/cytology , Colon/pathology , Molecular Imaging/methods , Spectroscopy, Fourier Transform Infrared , Adenoma/diagnostic imaging , Adenoma/pathology , Cluster Analysis , Colon/diagnostic imaging , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Humans , Signal-To-Noise Ratio
13.
Analyst ; 140(7): 2369-75, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25671463

ABSTRACT

In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.


Subject(s)
Optical Imaging/methods , Paraffin/isolation & purification , Spectroscopy, Fourier Transform Infrared , Artifacts , Colon/cytology
14.
Analyst ; 139(16): 4005-15, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24932462

ABSTRACT

Histopathology remains the gold standard method for colon cancer diagnosis. Novel complementary approaches for molecular level diagnosis of the disease are need of the hour. Infrared (IR) imaging could be a promising candidate method as it probes the intrinsic chemical bonds present in a tissue, and provides a "spectral fingerprint" of the biochemical composition. To this end, IR spectral histopathology, which combines IR imaging and data processing techniques, was employed on seventy seven paraffinized colon tissue samples (48 tumoral and 29 non-tumoral) in the form of tissue arrays. To avoid chemical deparaffinization, a digital neutralization of the spectral interference of paraffin was implemented. Clustering analysis was used to partition the spectra and construct pseudo-colored images, for assigning spectral clusters to various tissue structures (normal epithelium, malignant epithelium, connective tissue etc.). Based on the clustering results, linear discriminant analysis was then used to construct a stringent prediction model which was applied on samples without a priori histopathological information. The predicted spectral images not only revealed common features representative of the colonic tissue biochemical make-up, but also highlighted additional features like tumor budding and tumor-stroma association in a label-free manner. This novel approach of IR spectral imaging on paraffinized tissues showed 100% sensitivity and allowed detection and differentiation of normal and malignant colonic features based purely on their intrinsic biochemical features. This non-destructive methodology combined with multivariate statistical image analysis appears as a promising tool for colon cancer diagnosis and opens up the way to the concept of numerical spectral histopathology.


Subject(s)
Adenocarcinoma/diagnosis , Colon/pathology , Colonic Neoplasms/diagnosis , Pattern Recognition, Automated/methods , Spectroscopy, Fourier Transform Infrared/methods , Adenocarcinoma/pathology , Cluster Analysis , Colonic Neoplasms/pathology , Discriminant Analysis , Humans
15.
Appl Spectrosc ; 68(1): 57-68, 2014.
Article in English | MEDLINE | ID: mdl-24405955

ABSTRACT

Complementary diagnostic methods to conventional histopathology are currently being investigated for developing rapid and objective molecular-level understanding of various disorders, especially cancers. Spectral histopathology using vibrational spectroscopic imaging has been put in the frontline as potentially promising in this regard as it provides a "spectral fingerprint" of the biochemical composition of cells and tissues. In order to ascertain the feasible conditions of vibrational spectroscopic methods for tissue-imaging analysis, vibrational multimodal imaging (infrared transmission, infrared-attenuated total reflection, and Raman imaging) of the same colon tissue has been implemented. The spectral images acquired were subjected to multivariate clustering analysis in order to identify on a molecular level the constituent histological organization of the colon tissue such as the epithelium, connective tissue, etc., by comparing the cluster images with the histological reference images. Based on this study, a comparative analysis of important factors involved in the vibrational multimodal imaging approaches such as image resolution, time constraints, their advantages and limitations, and their applicability to biological tissues has been carried out. Out of the three different vibrational imaging modalities tested, infrared-attenuated total reflection mode of imaging appears to provide a good compromise between the tissue histology and the time constraints in achieving similar image contrast to that of Raman imaging at an approximately 33-fold faster measurement time. The present study demonstrates the advantages, the limitations of the important parameters involved in vibrational multimodal imaging approaches, and their potential application toward imaging of biological tissues.


Subject(s)
Colon/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Algorithms , Cluster Analysis , Histological Techniques , Humans , Image Processing, Computer-Assisted
16.
Cytometry A ; 83(3): 294-300, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23303722

ABSTRACT

Complementary diagnostic methods to conventional histopathology are under scrutiny for various types of cancers for rapid and molecular level diagnostics. In this perspective, a biophotonic approach based on infrared spectral micro-imaging combined with multivariate statistical analysis has been implemented on colon tissues. The ability of infrared imaging to investigate the intrinsic biochemical features of cells and tissues has been exploited to develop a new concept of spectral bar coding. To implement this concept, 10 frozen colon tissue samples (five nontumoral and tumoral pairs from five patients) were imaged using infrared spectral micro-imaging in a nondestructive manner. The spectral images were processed by a multivariate clustering method to identify the histological organization in a label-free manner. Spectral information from the epithelial components was then automatically recovered on the basis of their intrinsic biochemical composition, and compared using a statistical method (Mann-Whitney U-test) to construct spectral barcodes specific to each patient. The spectral barcodes representing the discriminant infrared spectral wavenumbers (900-1,800 cm(-1) ) enabled characterization of some of the malignancy-associated biochemical alterations associated with mucin, nucleotides, carbohydrates, and protein regions. This approach not only allowed the identification of common biochemical alterations among all the colon cancer patients, but also revealed a difference of gradient within individual patients. This new concept of spectral bar coding gives insight into the potential of infrared spectral micro-imaging as a complementary diagnostic tool to conventional histopathology, for biochemical level understanding of malignancy in colon cancers in an objective and label-free manner.


Subject(s)
Colonic Neoplasms/diagnosis , Diagnostic Imaging/methods , Molecular Diagnostic Techniques/methods , Spectrophotometry, Infrared , Humans , Infrared Rays , Multivariate Analysis
17.
J Biomed Opt ; 17(11): 116013, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23117808

ABSTRACT

Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.


Subject(s)
Colonic Neoplasms/diagnosis , Spectrophotometry, Infrared/methods , Adenocarcinoma/chemistry , Adenocarcinoma/diagnosis , Algorithms , Carbohydrates/chemistry , Collagen/chemistry , Colonic Neoplasms/chemistry , Diagnostic Imaging/methods , Diagnostic Imaging/statistics & numerical data , Humans , Nucleotides/chemistry , Optical Phenomena , Paraffin Embedding , Principal Component Analysis , Sepharose , Spectrophotometry, Infrared/statistics & numerical data , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Fourier Transform Infrared/statistics & numerical data , Tissue Array Analysis
18.
PLoS One ; 6(12): e28736, 2011.
Article in English | MEDLINE | ID: mdl-22194900

ABSTRACT

In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm(-1) area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm(-1) by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm(-1) by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm(-1) area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm(-1) ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm(-1) was unmodified. In conclusion, the 1660/1690 cm(-1) is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process.


Subject(s)
Bone and Bones/metabolism , Collagen/metabolism , Cross-Linking Reagents/metabolism , Protein-Lysine 6-Oxidase/metabolism , Amino Acids/metabolism , Animals , Bone and Bones/radiation effects , Cattle , Chromatography, High Pressure Liquid , Exostoses/complications , Exostoses/metabolism , Exostoses/pathology , Female , Lathyrism/complications , Lathyrism/metabolism , Lathyrism/pathology , Microspectrophotometry , Minerals , Photolysis/radiation effects , Radius/metabolism , Radius/pathology , Radius/radiation effects , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tibia/metabolism , Tibia/pathology , Tibia/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...