Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 199: 116012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232651

ABSTRACT

Plastic pollution in the aquatic environment has been assessed for many years by ocean waste collection expeditions around the globe or by river sampling. While the total amount of plastic produced worldwide is well documented, the amount of plastic found in the ocean, the distribution of particles on its surface and its evolution over time are still the subject of much debate. In this article, we propose a general fragmentation model, postulating the existence of a critical size below which particle fragmentation becomes extremely unlikely. In the frame of this model, an abundance peak appears for sizes around 1 mm, in agreement with real environmental data. Using, in addition, a realistic exponential waste feed to the ocean, we discuss the relative impact of fragmentation and feed rates, and the temporal evolution of microplastics (MP) distribution. New conclusions on the temporal trend of MP pollution are drawn.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Oceans and Seas
2.
Langmuir ; 39(11): 3871-3882, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36878006

ABSTRACT

Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.

3.
J Colloid Interface Sci ; 634: 300-313, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36535166

ABSTRACT

HYPOTHESIS: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. EXPERIMENTS: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. FINDINGS: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.


Subject(s)
Cannabidiol , Chitosan , Humans , Animals , Swine , Hydrogels/chemistry , Scattering, Small Angle , Emulsions/chemistry , X-Ray Diffraction , Water/chemistry
4.
Gels ; 8(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36135307

ABSTRACT

The present work reports on the structural study of a film made of a hybrid blend of biopolymers used as an enzyme carrier. A cellulose derivative (HPMC) and chitosan (CS) were combined in order to formulate a film on which Mucor miehei lipase was immobilized. The film was successfully used as a biocatalyst; however, little is known about the structure of the system. Therefore, small-angle X-ray scattering, Fourier transform infrared spectroscopy (FTIR), optical microscopy, and scanning electron microscopy (SEM), as well as microindentation measurements, were used to shed light on the structure of the promising biocatalyst. Among the results, intermolecular hydrogen bonds were observed between the amide groups of the two polymers and the lipase. The presence of the enzyme does not seem to affect the mechanical properties of the matrix. The used film after 35 cycles of reaction seemed to be fatigued and had lost part of its humidity, explaining the reduction of the enzyme activity.

5.
J Colloid Interface Sci ; 617: 257-266, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35278863

ABSTRACT

All-aqueous microdroplets produced by liquid-liquid phase separation have emerged as promising models of artificial cells, and offer new approaches for the solvent-free encapsulation of fragile solutes. Yet, the lack of a membrane on such droplets makes them intrinsically unstable against coarsening, and precludes a fine control over chemical localization, as solutes can freely diffuse through the interface. Herein, we report the construction of stable and impermeable water-in-water emulsions via the interfacial self-assembly of mixed sodium oleate/1-decanol bilayers on dextran-rich droplets produced by segregative liquid-liquid phase separation with poly(ethylene glycol). Lipids spontaneously self-assemble as multilamellar structures at the surface of the droplets as revealed by freeze-fracture transmission electron microscopy and small-angle X-ray scattering. We further demonstrate that the lipid-based membrane is impermeable to oligonucleotides and proteins, but also to a low molecular weight dye, so that a strict chemical encapsulation can be achieved by spontaneous partitioning within the droplets before membrane self-assembly. Taken together, our results highlight the ease of production of fatty acid-stabilized all-aqueous emulsions droplets able to encapsulate a range of solutes without the need of oil or organic solvents, paving the way to the construction of robust membrane-bounded, polymer-rich artificial cells.


Subject(s)
Fatty Acids , Water , Emulsions/chemistry , Polyethylene Glycols/chemistry , Solvents , Water/chemistry
6.
ACS Appl Mater Interfaces ; 14(11): 13305-13316, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35258941

ABSTRACT

Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5-SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol-gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel-Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h-1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h-1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.

7.
J Mater Chem B ; 10(14): 2680-2690, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35079759

ABSTRACT

In the present study a biocompatible oil-in-water (O/W) microemulsion was developed carrying short-wave infrared (SWIR) π-conjugated polymers and possessing photoacoustic properties for the first time. SWIR and NIR absorbing conjugated polymers were accomplished to be dissolved in a Food & Drug Administration (FDA) approved natural oil limonene, to formulate an O/W microemulsion using biocompatible surfactants (Span80, Labrasol®). Detailed structural characterization in the absence and presence of the polymers was performed by means of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) spectroscopy. In terms of biological evaluation of the loaded microemulsions, inhibition of cell proliferation in various cancer cell lines without exhibiting significant cytotoxicity was tested through the MTT assay. The developed π-conjugated polymers hosted in O/W microemulsions represent a technological approach with a wide range of biomedical and bioelectronic applications and in this contribution, their photoacoustic properties are presented as a proof-of-concept.


Subject(s)
Contrast Media , Polymers , Electron Spin Resonance Spectroscopy , Emulsions/chemistry , Scattering, Small Angle , X-Ray Diffraction
8.
RSC Adv ; 10(67): 41088-41097, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-35519210

ABSTRACT

In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.

9.
Soft Matter ; 15(41): 8302-8312, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31549700

ABSTRACT

The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.

10.
Eur Phys J E Soft Matter ; 41(3): 30, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29546498

ABSTRACT

Since the discovery of graphene oxide (GO), the most accessible of the precursors of graphene, this material has been widely studied for applications in science and technology. In this work, we describe a procedure to obtain GO dispersions in water at high concentrations, these highly dehydrated dispersions being in addition fully redispersible by dilution. With the availability of such concentrated samples, it was possible to investigate the structure of hydrated GO sheets in a previously unexplored range of concentrations, and to evidence a structural phase transition. Tentatively applying models designed for describing the small-angle scattering curve in the Smectic A (or [Formula: see text]) phase of lyotropic systems, it was possible to extract elastic parameters characterising the system on the dilute side of the transition, thereby evidencing the relevance of both electrostatic and steric (Helfrich) interactions in stabilising aqueous lamellar stacks of GO sheets.

11.
Adv Colloid Interface Sci ; 247: 363-373, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28732556

ABSTRACT

The analogy between soap films thinning under border capillary suction and lamellar stacks of surfactant bilayers dehydrated by osmotic stress is explored, in particular in the highly dehydrated limit where the soap film becomes a Newton black film. The nature of short-range repulsive interactions between surfactant-covered interfaces and acting across water channels in both cases will be discussed.

12.
Langmuir ; 33(13): 3223-3233, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28291357

ABSTRACT

The self-assembling properties of glycerol esters in water are well known. Still, few data on glycerol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of glycerol monoundecenoate (GM-C11:1) in different diluted and concentrated states. Its self-assembling properties in water and upon solid inorganic surfaces were investigated in the diluted state using surface tension experiments, atomic force microscopy, and cryogenic transmission electron microscopy studies. In the concentrated state, the gelling properties in the presence of water were investigated using polarized light microscopy, differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) experiments. GM-C11:1 at 100 mg/L self-assembles at the liquid/air interfaces as aggregates of approximately 20 nm in diameter, organized into concentric forms. These aggregates are spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 and 104 mg/L), GM-C11:1 is able to uniformly coat liquid/air and liquid/solid interfaces. In bulk, GM-C11:1 forms spontaneously aggregates and vesicles. In a more concentrated state, GM-C11:1 assembles into lamellar Lß and Lα forms in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interlamellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered to be "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effective molecule for surface treatments for which water retention is important.


Subject(s)
Fatty Acids, Monounsaturated/chemistry , Glycerol/chemistry , Water/chemistry , Fatty Acids, Monounsaturated/chemical synthesis , Glycerol/chemical synthesis , Molecular Structure
13.
Proc Natl Acad Sci U S A ; 113(40): 11088-11093, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27647890

ABSTRACT

Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.

14.
Angew Chem Int Ed Engl ; 55(43): 13475-13479, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27659782

ABSTRACT

Encapsulating biological materials in lipid vesicles is of interest for mimicking cells; however, except in some particular cases, such processes do not occur spontaneously. Herein, we developed a simple and robust method for encapsulating proteins in fatty acid vesicles in high yields. Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon varying the pH value, the precrowding feature in coacervates allowing for protein encapsulation within vesicles. We then produced enzyme-enriched vesicles and show that enzymatic reactions can occur in these micrometric capsules. This work could be of interest in the field of synthetic biology for building microreactors.

15.
J Colloid Interface Sci ; 468: 95-102, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26828279

ABSTRACT

The clouding phenomenon in non-ionic surfactant systems is a common feature that remains rare for ionic detergents. Here, we show that fatty acid (negatively charged) systems cloud upon cooling hot dispersions depending on the concentration or when adding excess guanidine hydrochloride. The clouding of these solutions yields the formation of enriched fatty acid droplets in which they exhibit a polymorphism that depends on the temperature: upon cooling, elongated wormlike micelles transit to rigid stacked bilayers inside droplets. Above this transition temperature, droplets coalesce yielding a phase separation between a fatty acid-rich phase and water, allowing extraction of dyes depending on their charge and lipophilicity. Positively charged and zwitterionic dyes were sequestered within the droplets (and then in the fatty acid-rich upper phase) whereas the negatively charged ones were found in both phases. Our results show an additional case of negatively charged surfactant which exhibit clouding phenomenon and suggest that these systems could be used for extracting solutes depending on their charge and lipophilicity.


Subject(s)
Coloring Agents/isolation & purification , Fatty Acids/chemistry , Coloring Agents/chemistry , Guanidine/chemistry , Particle Size , Surface Properties , Surface-Active Agents/chemistry
16.
Langmuir ; 32(2): 401-10, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26700689

ABSTRACT

Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.


Subject(s)
Artificial Cells/chemistry , Fatty Acids/chemistry , Lipid Bilayers/chemistry , Artificial Cells/ultrastructure , Guanidine/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Phase Transition
17.
Langmuir ; 30(19): 5518-26, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24787144

ABSTRACT

Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.


Subject(s)
Liposomes/chemistry , Tannins/chemistry , Taste/physiology , Wine/analysis , Catechin/analogs & derivatives , Catechin/chemistry , Humans , Magnetic Resonance Spectroscopy
18.
Langmuir ; 30(18): 5075-81, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24758608

ABSTRACT

There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.


Subject(s)
Fatty Acids/chemistry , Magnetic Resonance Spectroscopy/methods , Ethanolamine/chemistry
19.
Langmuir ; 29(45): 13717-22, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24215580

ABSTRACT

We investigate the behavior of multilamellar phases composed of lecithin and a commercial cosurfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X-ray scattering and a new procedure to fit the data, relevant parameters characterizing the lamellar structure were determined as a function of membrane composition, varying from 100% of lecithin to 100% of Simulsol. Scattering data illustrating the swelling of the lamellae for different amounts of cosurfactant are presented with the respective behavior of the Caillé parameter. With this experimental approach, we show that the incorporation of ethoxy brushes onto the lipid surface enhances repulsive interactions arising from membrane fluctuations and changes the interactions at the interface between bilayers.


Subject(s)
Lecithins/chemistry , Lipid Bilayers/chemistry , Surface-Active Agents/chemistry , Cell Membrane/chemistry
20.
Langmuir ; 29(18): 5547-55, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23565776

ABSTRACT

Hybrid amphiphiles composed of a lipid covalently linked to biomolecules are attracting considerable attention, owing to their unique physicochemical and biological properties. Herein, we have synthesized novel amino acid-nucleotide-lipids (ANLs), presenting phenylalanine and thymidine residues and saturated or unsaturated diacyl glycerol lipid moieties to investigate the effect of the specific aminoacid moieties on both aggregation properties and interactions of ANLs with single strand polyA RNA. Physicochemical studies (DLS, cryo-TEM, and small angle X-ray scattering) indicate that phenylanaline amino acids inserted at the 5' position of the nucleotide-lipids stabilize multilamellar systems, whereas unilamellar vesicles are formed preferentially in the case of nucleotide-lipids (NLs). Both NLs and ANLs exhibit weak interactions with complementary polyA RNA as revealed by isothermal titration calorimetry investigations. The multilamellar vesicles obtained with ANLs could be used as a versatile carrier, suitable for both hydrophobic and hydrophilic therapeutic molecules.


Subject(s)
Amino Acids/chemistry , Lipids/chemistry , Nucleotides/chemistry , Amino Acids/chemical synthesis , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...