Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(27): 26757-26765, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28871496

ABSTRACT

Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg-1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2 = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast, k slow, and Ffast). The stabilization (%) correlated well with the fast-stabilizing domain (Ffast), clay content (%), and Fe oxide content (mg kg-1), but correlated poorly with kinetic rate constants (k fast and k slow). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.


Subject(s)
Arsenic/chemistry , Soil Pollutants/chemistry , Industrial Waste , Iron , Mining , Soil/chemistry , Steel
2.
Sci Total Environ ; 551-552: 571-8, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26896586

ABSTRACT

The removal of Zn, As(V), and Cd during the leachate seepage process was measured in single, binary, and ternary solute systems by batch sorption and 1-D column flow experiments, followed by a sequential extraction procedure (SEP). In single-solute systems, sorption (Kd(⁎)) occurred in the order of As(V)>Zn≫Cd, and this sequence did not change in the presence of other solutes. In multi-solute systems, the sorption of Zn (~20%) and Cd (~27%) was enhanced by As(V), while Zn and Cd suppressed the sorption of each other. In all cases, As(V) sorption was not affected by the cations, indicating that As(V) is prioritized by sorption sites to a much greater degree than Zn and Cd. Element retention by column soils was strongly correlated (r(2)=0.77) with Kd(⁎). Across column segments, mass retention was in the order of inlet (36-54%)>middle (26-35%)>outlet (20-31%), except for Cd in the Zn-Cd binary system. The result of SEP revealed that most of the retained Cd (98-99%) and Zn (56-71%) was in the labile fraction (e.g., the sum of F1 and F2) while only 9-12% of As(V) was labile and most (>55%) was specifically adsorbed to Fe/Al oxides. Plots of the labile fraction (f(labile)) and the fast sorption fraction (f(fast)) suggested that the kinetics of specific As(V) sorption occur rapidly (f(fast)>f(labile)), whereas labile Zn and Cd sorption occurs slowly (f(labile)>f(fast)), indicating the occurrence of kinetically limited labile sorption sites, probably due to Zn-Cd competition. In conclusion, the element leaching potential of mine leachate can be greatly attenuated during downgradient soil seepage. However, when assessing the soil attenuation process, the impact of sorption competitors and the lability of adsorbed elements should first be considered.

3.
Chemosphere ; 81(9): 1124-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20869095

ABSTRACT

The chemical attenuation of As by soils from abandoned mine sites was evaluated. Several soil samples, including As contaminated soil from the mine impacted areas, as well as As-free soils down-gradient from the mine sites, were collected across abandoned mine sites. Leaching and adsorption experiments were conducted under batch and 1-D water flow conditions. The cumulative As mass from 10 step sequential leaching experiments with six As contaminated soils, using 10 mM CaCl2 solution, was less than 1% of the total As present in soils, indicating that As in contaminated soils is strongly adsorbed onto soil particles, which can serve as a long term potential As source. As adsorption by As-free soils was clearly nonlinear, with Freundlich N values (sorption nonlinearity) ranging from 0.56 to 0.87. Both the total As content in mine soils and the concentration-specific adsorption coefficient for arsine-free soils were best described by coupling the pH with various forms of Fe/Al oxides. In the breakthrough curves (BTCs) for As contaminated soils, an initial high concentration of As (called first-flush) was observed, and this flush export leveled off after the displacement of a few pore volumes. In the BTCs from layered soils, where clean down-gradient soils were overloaded above the mine soil, the appearance of measurable As was retarded, showing that the As attenuation by soils was effective in a flow water system. Also, the observed perturbation in the concentration of As during flow interruption supports that leaching/attenuation of As via flowing water occurs under nonequilibrium conditions. The results from both batch leaching/adsorption and column displacement experiments strongly suggested that the leaching of As from mine soils was rate limited and the risk of As leaching from soils can be mitigated by attenuation mechanisms, such as adsorption, provided by down-gradient clean soils.


Subject(s)
Arsenic/chemistry , Environmental Restoration and Remediation/methods , Mining , Soil Pollutants/chemistry , Soil/chemistry , Arsenic/analysis , Republic of Korea , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...