Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750578

ABSTRACT

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Subject(s)
Erythrocytes , Erythropoiesis , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism
2.
Stem Cell Rev Rep ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639829

ABSTRACT

Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and new studies in medicine have contributed to an increase in animal experiments throughout the years. With the rapid increase in animal testing, concerns arise including ethical issues, high cost, complex procedures, and potential inaccuracies.Alternative solutions have recently been investigated to address the problems of animal testing. Some of these technologies are related to stem cell technologies, such as organ-on-a-chip, organoids, and induced pluripotent stem cell models. The aim of the review is to focus on stem cell related methodologies, such as organoids, that can serve as an alternative to animal testing and discuss its advantages and limitations, alongside regulatory considerations.Although stem cell related methodologies has shortcomings, it has potential to replace animal testing. Achieving this requires further research on stem cells, with potential societal and technological benefits.

3.
Acta Biomater ; 167: 234-248, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37295627

ABSTRACT

Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which transmits important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced the in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3ß) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggest the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offer a promising approach of a noncellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.


Subject(s)
Cartilage, Articular , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Chondrocytes/metabolism , Decellularized Extracellular Matrix , Cartilage, Articular/physiology , Extracellular Matrix/metabolism , Cell Differentiation , Chondrogenesis , Tissue Engineering
4.
Sci Rep ; 12(1): 19636, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385263

ABSTRACT

Association between exposure to periodontal bacteria and development of autoantibodies related to rheumatoid arthritis (RA) has been widely accepted; however, direct causal relationship between periodontal bacteria and rheumatoid factor (RF) is currently not fully understood. We investigated whether periodontal bacteria could affect RF status. Patients with preclinical, new-onset, or chronic RA underwent periodontal examination, and investigation of subgingival microbiome via 16S rRNA sequencing. Degree of arthritis and RF induction was examined in collagen-induced arthritis (CIA) mice that were orally inoculated with different periodontal bacteria species. Subsequently, single-cell RNA sequencing analysis of the mouse spleen cells was performed. Patients with preclinical RA showed an increased abundance of the Porphyromonadacae family in the subgingival microbiome compared to those with new-onset or chronic RA, despite comparable periodontitis severity among them. Notably, a distinct subgingival microbial community was found between patients with high-positive RF and those with negative or low-positive RF (p=0.022). Oral infections with the periodontal pathogens P. gingivalis and Treponema denticola in CIA mice similarly enhanced arthritis score, but resulted in different levels of RF induction. Genes related to B cell receptor signaling, B cell proliferation, activation, and differentiation, and CD4+ T cell costimulation and cytokine production were involved in the differential induction of RF in mice exposed to different bacteria. In summary, periodontal microbiome might shape RF status by affecting the humoral immune response during RA pathogenesis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Microbiota , Mice , Animals , Rheumatoid Factor , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Treponema denticola
5.
Stem Cell Res Ther ; 13(1): 303, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35841004

ABSTRACT

BACKGROUND: The rarity of systemic sclerosis (SSc) has hampered the development of therapies for this intractable autoimmune disease. Induced pluripotent stem cell (iPSC) can be differentiated into the key disease-affected cells in vitro. The generation of patient-derived iPSCs has opened up possibilities for rare disease modeling. Since these cells can recapitulate the disease phenotypes of the cell in question, they are useful high-throughput platforms for screening for drugs that can reverse these abnormal phenotypes. METHODS: SSc iPSC was generated from PBMC by Sendai virus. Human iPSC lines from SSc patients were differentiated into dermal fibroblasts and keratinocytes. The iPSC-derived differentiated cells from the SSc patients were used on high-throughput platforms to screen for FDA-approved drugs that could be effective treatments for SSc. RESULTS: Skin organoids were generated from these cells exhibited fibrosis that resembled SSc skin. Screening of the 770-FDA-approved drug library showed that the anti-osteoporotic drug raloxifene reduced SSc iPSC-derived fibroblast proliferation and extracellular matrix production and skin fibrosis in organoids and bleomycin-induced SSc-model mice. CONCLUSIONS: This study reveals that a disease model of systemic sclerosis generated using iPSCs-derived skin organoid is a novel tool for in vitro and in vivo dermatologic research. Since raloxifene and bazedoxifene are well-tolerated anti-osteoporotic drugs, our findings suggest that selective estrogen receptor modulator (SERM)-class drugs could treat SSc fibrosis.


Subject(s)
Scleroderma, Systemic , Skin Diseases , Animals , Cells, Cultured , Fibroblasts/metabolism , Fibrosis , Humans , Leukocytes, Mononuclear/metabolism , Mice , Raloxifene Hydrochloride/adverse effects , Scleroderma, Systemic/genetics , Selective Estrogen Receptor Modulators/adverse effects , Skin/pathology , Skin Diseases/pathology
6.
Front Neurosci ; 16: 816174, 2022.
Article in English | MEDLINE | ID: mdl-35401074

ABSTRACT

Alzheimer's disease (AD) is the most common condition in patients with dementia and affects a large population worldwide. The incidence of AD is expected to increase in future owing to the rapid expansion of the aged population globally. Researchers have shown that women are twice more likely to be affected by AD than men. This phenomenon has been attributed to the postmenopausal state, during which the level of estrogen declines significantly. Estrogen is known to alleviate neurotoxicity in the brain and protect neurons. While the effects of estrogen have been investigated in AD models, to our knowledge, they have not been investigated in a stem cell-based three-dimensional in vitro system. Here, we designed a new model for AD using induced pluripotent stem cells (iPSCs) in a three-dimensional, in vitro culture system. We used 5xFAD mice to confirm the potential of estrogen in alleviating the effects of AD pathogenesis. Next, we confirmed a similar trend in an AD model developed using iPSC-derived cerebral organoids, in which the key characteristics of AD were recapitulated. The findings emphasized the potential of estrogen as a treatment agent for AD and also showed the suitability of AD-recapitulating cerebral organoids as a reliable platform for disease modeling and drug screening.

7.
Stem Cell Rev Rep ; 18(1): 142-154, 2022 01.
Article in English | MEDLINE | ID: mdl-34532844

ABSTRACT

In 2006, the induced pluripotent stem cell (iPSC) was presented to the world, paving the way for the development of a magnitude of novel therapeutic alternatives, addressing a diverse range of diseases. However, despite the immense cell therapy potential, relatively few clinical trials evaluating iPSC-technology have actually translated into interventional, clinically applied treatment regimens. Herein, our aim was to determine trends in globally conducted clinical trials involving iPSCs. Data were derived both from well-known registries recording clinical trials from across the globe, and databases from individual countries. Comparisons were firstly drawn between observational and interventional studies before the latter was further analyzed in terms of therapeutic and nontherapeutic trials. Our main observations included global distribution, purpose, target size, and types of disorder relevant to evaluated trials. In terms of nontherapeutic trials, the USA conducted the majority, a large average number of participants-187-was included in the trials, and studies on circulatory system disorders comprised a slightly higher proportion of total studies. Conversely, Japan was the frontrunner in terms of conducting therapeutic trials, and the average number of participants was much lower, at roughly 29. Disorders of the circulatory, as well as nervous and visual systems, were all studied in equal measure. This review highlights the impact that iPSC-based cell therapies can have, should development thereof gain more traction. We lastly considered a few companies that are actively utilizing iPSCs in the development of therapies for various diseases, for whom the global trends in clinical trials could become increasingly important.


Subject(s)
Induced Pluripotent Stem Cells , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/metabolism , Japan
8.
Int J Stem Cells ; 15(3): 233-246, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-34966002

ABSTRACT

Background and Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples. Methods and Results: We differentiated CMs from HC- and SLE-iPSCs using 2D culture platforms. SLE-CMs showed decreased proliferation and increased levels of fibrosis and hypertrophy marker expression; however, HC-and SLE-monolayer CMs reacted differently to SLE serum treatment. HC-iPSCs were also differentiated into CMs using 3D spheroid culture and anti-Ro autoantibody was treated along with SLE serum. 3D-HC-CMs generated more mature CMs compared to the CMs generated using 2D culture. The treatment of anti-Ro autoantibody rapidly increased the gene expression of fibrosis, hypertrophy, and apoptosis markers, and altered the calcium signaling in the CMs. Conclusions: iPSC derived cardiomyocytes with patient-derived serum, and anti-Ro antibody treatment could serve in effective autoimmune disease modeling including SLE. We believe that the present study might briefly provide possibilities on the application of a combination of patient-derived materials and iPSCs in disease modeling of autoimmune diseases.

9.
Cells ; 10(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34831254

ABSTRACT

Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Models, Biological , Osteoarthritis/pathology , Cell Differentiation , Humans
10.
Biofabrication ; 13(4)2021 08 31.
Article in English | MEDLINE | ID: mdl-34404032

ABSTRACT

The pellet formation has been regarded as a golden standard forin vitrochondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of differentiated cartilage pellet in defective articular cartilage treatment. To address this drawback, a perichondrium-inspired permeable nanofibrous tube (PINaT) well with a nanofibrous wall permeable to gas and soluble molecules is proposed. The PINaT well was fabricated with a micro deep drawing process where a flat thin nanofibrous membrane was transformed to a 3.5 mm deep tube well with a ∼50µm thick nanofibrous wall. Similar toin vivoperichondrium, the PINaT well was found to allow oxygen and growth factor diffusion required for chondrogenic differentiation across the entire nanofibrous wall. Analyses of gene expressions (COL2A1, COL10A1, ACAN, and SOX9), proteins (type II and X collagen), and glycosaminoglycans contents were conducted to assess the differentiation performance and clinical efficacy of differentiated cartilage pellet. The regulated spatially homogeneous chondrogenic microenvironment around the human induced pluripotent stem cell-derived pellet (3 × 105cells per pellet) in the PINaT well remarkably improved the quality of the differentiated pellet toward a more hyaline-like cartilage pellet. Furthermore, an accelerated chondrogenic differentiation process of the pellet produced by the PINaT well was achieved for 14 days, demonstrating a hyaline cartilage-specific marker similar to the control pellet differentiated for 20 days. Finally, the enhanced clinical efficacy of the hyaline-like cartilage pellet was confirmed using an osteochondral defect rat model, with the repaired tissue resembling hyaline cartilage rather than fibrous cartilage after 8 weeks of regeneration.


Subject(s)
Induced Pluripotent Stem Cells , Nanofibers , Animals , Cartilage, Articular , Cell Differentiation , Chondrocytes , Chondrogenesis , Humans , Hyalin , Hyaline Cartilage , Rats
11.
J Clin Med ; 10(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300306

ABSTRACT

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.

12.
Pharmaceutics ; 13(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067675

ABSTRACT

Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into cells. Cartilage tissue lacks the natural ability to heal, making it difficult to treat osteoarthritis (OA) and rheumatoid arthritis (RA), which are the two main types of joint-related disease. Although both OA and RA affect the joint, RA is an autoimmune disease, while OA is a degenerative joint condition. Gene transfer using minicircles has also been used in many studies regarding cartilage and its diseased conditions. In this review, we summarize the cartilage-, OA-, and RA-based studies that have used minicircles as the gene delivery system.

13.
Front Immunol ; 12: 631291, 2021.
Article in English | MEDLINE | ID: mdl-33763076

ABSTRACT

Mesenchymal stem cell (MSC) therapies have been used as cell-based treatments for decades, owing to their anti-inflammatory, immunomodulatory, and regenerative properties. With high expectations, many ongoing clinical trials are investigating the safety and efficacy of MSC therapies to treat arthritic diseases. Studies on osteoarthritis (OA) have shown positive clinical outcomes, with improved joint function, pain level, and quality of life. In addition, few clinical MSC trials conducted on rheumatoid arthritis (RA) patients have also displayed some optimistic outlook. The largely positive outcomes in clinical trials without severe side effects establish MSCs as promising tools for arthritis treatment. However, further research is required to investigate its applicability in clinical settings. This review discusses the most recent advances in clinical studies on MSC therapies for OA and RA.


Subject(s)
Arthritis, Rheumatoid/therapy , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis/therapy , Cell- and Tissue-Based Therapy/statistics & numerical data , Cells, Cultured , Clinical Trials as Topic , Humans , Quality of Life
14.
Cells ; 10(2)2021 02 04.
Article in English | MEDLINE | ID: mdl-33557199

ABSTRACT

Early osteoarthritis (OA)-like symptoms are difficult to study owing to the lack of disease samples and animal models. In this study, we generated induced pluripotent stem cell (iPSC) lines from a patient with a radiographic early-onset finger osteoarthritis (efOA)-like condition in the distal interphalangeal joint and her healthy sibling. We differentiated those cells with similar genetic backgrounds into chondrogenic pellets (CPs) to confirm efOA. CPs generated from efOA-hiPSCs (efOA-CPs) showed lower levels of COL2A1, which is a key marker of hyaline cartilage after complete differentiation, for 21 days. Increase in pellet size and vacuole-like morphologies within the pellets were observed in the efOA-CPs. To analyze the changes occurred during the development of vacuole-like morphology and the increase in pellet size in efOA-CPs, we analyzed the expression of OA-related markers on day 7 of differentiation and showed an increase in the levels of COL1A1, RUNX2, VEGFA, and AQP1 in efOA-CPs. IL-6, MMP1, and MMP10 levels were also increased in the efOA-CPs. Taken together, we present proof-of-concept regarding disease modeling of a unique patient who showed OA-like symptoms.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Osteoarthritis/pathology , Age of Onset , Cell Differentiation , Chondrogenesis , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Osteoarthritis/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
15.
Int J Mol Sci ; 21(7)2020 Mar 29.
Article in English | MEDLINE | ID: mdl-32235300

ABSTRACT

Osteoarthritis (OA) is the most common joint disease that causes pain and disability in the adult population. OA is primarily caused by trauma induced by an external force or by age-related cartilage damage. Chondrocyte hypertrophy or chondrocyte senescence is thought to play a role in the initiation and progression of OA. Although chondrocyte hypertrophy and cell death are both crucial steps during the natural process of endochondral bone formation, the abnormal activation of these two processes after injury or during aging seems to accelerate the progression of OA. However, the exact mechanisms of OA progression and these two processes remain poorly understood. Chondrocyte senescence and hypertrophy during OA share various markers and processes. In this study, we reviewed the changes that occur during chondrocyte hypertrophy or senescence in OA and the attempts that were made to regulate them. Regulation of hypertrophic or senescent chondrocytes might be a potential therapeutic target to slow down or stop OA progression; thus, a better understanding of the processes is required for management.


Subject(s)
Cellular Senescence , Chondrocytes/metabolism , Disease Susceptibility , Osteoarthritis/etiology , Osteoarthritis/metabolism , Animals , Biomarkers , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Differentiation , Cell Proliferation , Chondrocytes/pathology , Chondrogenesis , Disease Progression , Gene Expression Regulation , Humans , Hypertrophy , Osteoarthritis/pathology , Osteoarthritis/therapy , Osteogenesis , Signal Transduction
16.
Cells ; 9(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32121522

ABSTRACT

: Human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently, chondrogenesis using human pluripotent stem cells (hiPSCs) is accomplished using human recombinant growth factors. Here, we differentiate hiPSCs into chondrogenic pellets using minicircle vectors. Minicircles are a non-viral gene delivery system that can produce growth factors without integration into the host genome. We generated minicircle vectors containing bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 3 (TGFß3) and delivered them to mesenchymal stem cell-like, hiPSC-derived outgrowth (OG) cells. Cell pellets generated using minicircle-transfected OG cells successfully differentiated into the chondrogenic lineage. The implanted minicircle-based chondrogenic pellets recovered the osteochondral defects in rat models. This work is a proof-of-concept study that describes the potential application of minicircle vectors in cartilage regeneration using hiPSCs.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Chondrocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Humans , Rats , Rats, Sprague-Dawley , Sequence Analysis, Protein , Transfection
17.
Cell Transplant ; 28(5): 529-537, 2019 05.
Article in English | MEDLINE | ID: mdl-30251563

ABSTRACT

Regeneration of articular cartilage is of great interest in cartilage tissue engineering since articular cartilage has a low regenerative capacity. Due to the difficulty in obtaining healthy cartilage for transplantation, there is a need to develop an alternative and effective regeneration therapy to treat degenerative or damaged joint diseases. Stem cells including various adult stem cells and pluripotent stem cells are now actively used in tissue engineering. Here, we provide an overview of the current status of cord blood cells and induced pluripotent stem cells derived from these cells in cartilage regeneration. The abilities of these cells to undergo chondrogenic differentiation are also described. Finally, the technical challenges of articular cartilage regeneration and future directions are discussed.


Subject(s)
Cartilage, Articular/cytology , Chondrogenesis , Fetal Blood/cytology , Induced Pluripotent Stem Cells/cytology , Tissue Engineering/methods , Animals , Cartilage, Articular/physiology , Cell Differentiation , Humans , Regeneration
18.
Stem Cell Res Ther ; 9(1): 357, 2018 12 29.
Article in English | MEDLINE | ID: mdl-30594247

ABSTRACT

BACKGROUND: Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis (RA). The drug is cost-effective, but sometimes causes hepatotoxicity, requiring a physician's attention. In this study, we simulated hepatotoxicity by treating hepatocytes derived from RA patient-derived induced pluripotent stem cells (RA-iPSCs) with MTX. METHODS: RA-iPSCs and healthy control iPSCs (HC-iPSCs) were established successfully. RA-iPSCs were differentiated into hepatocytes in two-dimensional (2D) monolayers and three-dimensional (3D) hepatocyte spheroid cultures; this process required growth factors such as BMP4, bFGF, HGF, and OSM. Immunofluorescence staining and flow cytometry were performed to confirm that the mature hepatocytes expressed cytokeratin 18, anti-alpha-1 antitrypsin, and albumin. MTX toxicity was evaluated via monitoring of cell viability, alanine aminotransferase, and mitochondrial status after MTX treatment in 2D and 3D cultures. RESULTS: RA-iPSCs generated from three RA patients suffering from MTX-induced hepatotoxicity differentiated into the endoderm lineage, hepatoblasts, and hepatocytes. In 2D culture, RA-iPSC-derived hepatocytes were more sensitive to MTX than healthy controls. A 3D culture system using hepatocyte spheroids also successfully recapitulated MTX-induced hepatotoxicity. The 3D culture system had several advantages, including longer culture periods under more complex conditions. CONCLUSIONS: A patient-derived iPSC platform could recapitulate MTX toxicity. Simulation of drug toxicity in vitro may help clinicians choose safer drugs or less toxic doses.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Arthritis, Rheumatoid/drug therapy , Methotrexate/therapeutic use , Antimetabolites, Antineoplastic/pharmacology , Arthritis, Rheumatoid/pathology , Cell Differentiation , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Methotrexate/pharmacology
19.
Exp Mol Med ; 50(8): 1-2, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158563

ABSTRACT

After online publication of this article, the authors noticed an error in the Figure section. The correct statement of this article should have read as below.

20.
Stem Cell Res Ther ; 9(1): 217, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30103800

ABSTRACT

BACKGROUND: Skin is an organ that plays an important role as a physical barrier and has many other complex functions. Skin mimetics may be useful for studying the pathophysiology of diseases in vitro and for repairing lesions in vivo. Cord blood mononuclear cells (CBMCs) have emerged as a potential cell source for regenerative medicine. Human induced pluripotent stem cells (iPSCs) derived from CBMCs have great potential for allogenic regenerative medicine. Further study is needed on skin differentiation using CBMC-iPSCs. METHODS: Human iPSCs were generated from CBMCs by Sendai virus. CBMC-iPSCs were differentiated to fibroblasts and keratinocytes using embryonic body formation. To generate CBMC-iPSC-derived 3D skin organoid, CBMC-iPSC-derived fibroblasts were added into the insert of a Transwell plate and CBMC-iPSC-derived keratinocytes were seeded onto the fibroblast layer. Transplantation of 3D skin organoid was performed by the tie-over dressing method. RESULTS: Epidermal and dermal layers were developed using keratinocytes and fibroblasts differentiated from cord blood-derived human iPSCs, respectively. A complex 3D skin organoid was generated by overlaying the epidermal layer onto the dermal layer. A humanized skin model was generated by transplanting this human skin organoid into SCID mice and effectively healed skin lesions. CONCLUSIONS: This study reveals that a human skin organoid generated using CBMC iPSCs is a novel tool for in-vitro and in-vivo dermatologic research.


Subject(s)
Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Keratinocytes/metabolism , Skin/metabolism , Animals , Humans , Male , Mice, Inbred NOD , Mice, SCID , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...