Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Asian J Pharm Sci ; 19(3): 100927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948399

ABSTRACT

Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.

2.
Chemosphere ; 353: 141639, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447902

ABSTRACT

Thermo-chemical behavior of a microalgal biomass; Dunaliella salina was investigated through thermo-gravimetric analyses. Fully-grown D. salina biomass were subjected for biochar conversion using pyrolytic treatment at three distinct heating rates such as 2.5, 5, and 15 °C min-1. The kinetic appraisals were explained by using model-free kinetics viz., Kissinger-Akahira-Sanose, Flynn-Waal-Ozawa and Starink iso-conversional correlations with concomitant evaluation of activation energies (Ea). The Ea value is 194.2 kJ mol-1 at 90% conversion in FWO model, which is higher as compared to other two models. Moisture, volatile substances, and other biochemical components of the biomass were volatilized between 400 and 1000 K in two separate thermo-chemical breakdown regimes. Microscopic and surface characterization analyses were carried out to elucidate the elemental and morphological characteristics of the biomass and biochar. Further, the proficiency of the prepared biochar was tested for removing naphthalene from the watery media. The novelty of the present study lies in extending the applicability of biochar prepared from D. salina for the removal of a model polyaromatic hydrocarbon, naphthalene.


Subject(s)
Charcoal , Naphthalenes , Biomass , Kinetics , Thermogravimetry
3.
Photodiagnosis Photodyn Ther ; 45: 103959, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228257

ABSTRACT

Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.


Subject(s)
Breast Neoplasms , Nanostructures , Photochemotherapy , Humans , Female , Breast Neoplasms/drug therapy , Photochemotherapy/methods , Phototherapy/methods , Photothermal Therapy , Photosensitizing Agents/therapeutic use , Nanostructures/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...