Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nonlinear Sci ; 33(5): 74, 2023.
Article in English | MEDLINE | ID: mdl-37337607

ABSTRACT

The Moore-Greitzer partial differential equation (PDE) is a commonly used mathematical model for capturing flow and pressure changes in axial-flow jet engine compressors. Determined by compressor geometry, the deterministic model is characterized by three types of Hopf bifurcations as the throttle coefficient decreases, namely surge (mean flow oscillations), stall (inlet flow disturbances) or a combination of both. Instabilities place fundamental limits on jet-engine operating range and thus limit the design space. In contrast to the deterministic PDEs, the Hopf bifurcation in stochastic PDEs is not well understood. The goal of this particular work is to rigorously develop low-dimensional approximations using a multiscale analysis approach near the deterministic stall bifurcation points in the presence of additive noise acting on the fast modes. We also show that the reduced-dimensional approximations (SDEs) contain multiplicative noise. Instability margins in the presence of uncertainties can be thus approximated, which will eventually lead to lighter and more efficient jet engine design.

2.
Phys Rev E ; 93(6): 062104, 2016 06.
Article in English | MEDLINE | ID: mdl-27415205

ABSTRACT

The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

SELECTION OF CITATIONS
SEARCH DETAIL
...