Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(14): 25696-25706, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237094

ABSTRACT

Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.

2.
Phys Rev Lett ; 126(5): 054801, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33605740

ABSTRACT

In situ generation of a high-energy, high-current, spin-polarized electron beam is an outstanding scientific challenge to the development of plasma-based accelerators for high-energy colliders. In this Letter, we show how such a spin-polarized relativistic beam can be produced by ionization injection of electrons of certain atoms with a circularly polarized laser field into a beam-driven plasma wakefield accelerator, providing a much desired one-step solution to this challenge. Using time-dependent Schrödinger equation (TDSE) simulations, we show the propensity rule of spin-dependent ionization of xenon atoms can be reversed in the strong-field multiphoton regime compared with the non-adiabatic tunneling regime, leading to high total spin polarization. Furthermore, three-dimensional particle-in-cell simulations are incorporated with TDSE simulations, providing start-to-end simulations of spin-dependent strong-field ionization of xenon atoms and subsequent trapping, acceleration, and preservation of electron spin polarization in lithium plasma. We show the generation of a high-current (0.8 kA), ultralow-normalized-emittance (∼37 nm), and high-energy (2.7 GeV) electron beam within just 11 cm distance, with up to ∼31% net spin polarization. Higher current, energy, and net spin-polarization beams are possible by optimizing this concept, thus solving a long-standing problem facing the development of plasma accelerators.

SELECTION OF CITATIONS
SEARCH DETAIL
...